https://doi.org/10.1140/epjp/s13360-021-01939-2
Regular Article
Temperature-dependent criticality in random 2D Ising models
Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
Received:
5
August
2021
Accepted:
31
August
2021
Published online:
14
September
2021
We consider 2D random Ising ferromagnetic models, where quenched disorder is represented either by random local magnetic fields (random-field Ising model) or by a random distribution of interaction couplings (random-bond Ising model). In both cases, we first perform zero- and finite-temperature Monte Carlo simulations to determine how the critical temperature depends on the disorder parameter. We then focus on the reversal transition triggered by an external field and study the associated Barkhausen noise. Our main result is that the critical exponents characterizing the power law associated with the Barkhausen noise exhibit a temperature dependence in line with existing experimental observations.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.