https://doi.org/10.1140/epjp/s13360-021-01703-6
Regular Article
Calculation of a magnetic force acting on small superconducting celestial bodies
Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
Received:
15
February
2021
Accepted:
25
June
2021
Published online:
8
July
2021
Recent discoveries of superconducting phases in the samples of meteorites suggest the possibility of a natural occurrence of superconducting state in space. Superconductors are known to exhibit interesting behaviours when subjected to external magnetic fields, such as levitation. Similar force may act on a superconducting bit in space. The goal of this paper is to quantify this force and assess its effects. Several scenarios in which a superconducting bit can be produced and interact with a magnetic field in space are suggested. The force acting on a superconductor in different conditions is calculated with numerical simulations. The dependence on a magnetic flux density, its gradient, and the geometry and the properties of the superconductor are found. The empirical formulas are derived and used to calculate a magnetic force. The resultant force is extremely weak in all analysed scenarios. It is found that its strength decreases rapidly with the distance from the source of the magnetic flux. Its effect on trajectory of the superconductor is almost negligible. Some possibilities of increasing its strength and the effects are considered.
The original version of this article was revised due to a wrong affiliation.
A correction to this article is available online at https://doi.org/10.1140/epjp/s13360-021-02016-4.
Copyright comment corrected publication 2021
© The Author(s) 2021. corrected publication 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.