https://doi.org/10.1140/epjp/s13360-021-01672-w
Regular Article
Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: theory and computing
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
Received:
30
April
2021
Accepted:
15
June
2021
Published online:
6
July
2021
We study a class of single-degree-of-freedom oscillators whose restoring function is affected by small nonlinearities and excited by stationary Gaussian stochastic processes. We obtain, via the stochastic perturbation technique, approximations of the main statistics of the steady state, which is a random variable, including the first moments, and the correlation and power spectral functions. Additionally, we combine this key information with the principle of maximum entropy to construct approximations of the probability density function of the steady state. We include two numerical examples where the advantages and limitations of the stochastic perturbation method are discussed with regard to certain general properties that must be preserved.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.