https://doi.org/10.1140/epjp/s13360-021-01303-4
Review
Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege út 29-33, 1121, Budapest, Hungary
Received:
10
December
2020
Accepted:
9
March
2021
Published online:
19
April
2021
In the present paper, reported literature data on the grain-size dependence of resistivity of Ni and Cu are critically evaluated by two conceptually different methods. One is the phenomenological approach of Andrews (Phys. Lett. 19: 558, 1965) according to which in a polycrystalline metal there is a resistivity contribution inversely proportional to the average grain diameter, the proportionality constant defined as the Andrews parameter A. The other method is the customary Mayadas–Shatzkes (MS) model (Phys Rev B 1: 1382, 1970) yielding a grain-boundary reflection coefficient R. During the analysis, special care was taken to rely only on data for which the surface scattering resistivity contribution was definitely negligibly small and the grain size was determined by direct microscopy imaging. By sorting out with this analysis the most reliable grain-size-dependent resistivity data for polycrystalline Ni and Cu metals with random grain boundaries, we have then derived the current best room-temperature values of the Andrews parameter A, the specific grain-boundary resistivity and the reflection coefficient R. We have also found a fairly good relation between the parameters A and R and compared the experimental values with their theoretical estimates reported in the literature. Then, the conceptual differences between the two approaches are discussed and the deficiencies of the MS model, especially in connection with the validity of Matthiessen’s rule, are highlighted. A major conclusion is that by the Andrews method one can derive a model-independent reliable parameter characterizing the grain-boundary contribution to the resistivity of metals.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.