https://doi.org/10.1140/epjp/s13360-021-01203-7
Regular Article
Beam loss monitoring with unfolding techniques
1
Department of Energy, Politecnico di Milano, via Lambruschini, 4, 20156, Milan, Italy
2
Fondazione CNAO, Strada Privata Campeggi, 27100, Pavia, Italy
3
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Brunswick, Germany
Received:
6
December
2020
Accepted:
7
February
2021
Published online:
19
February
2021
Since the first particle accelerator’s construction in 1931, an exponential spread of these machines occurred worldwide, in different kinds of applications. Nowadays, these are mainly used for industrial (60%) and medical (35%) purposes and for scientific research (5%). High energy secondary mixed fields produced by the particle beams interaction with matter imply a complex environmental dosimetry and special radiation protection regulations able to guarantee workers and population safety. In the medical field, this aspect is particularly emphasized in hadrontherapy centres, where high energy charged particles such as protons and carbon ions modify environmental doses, with a significant increase in the neutron contribution. This work proposes a technique to identify points of losses of the primary particle beam around an acceleration ring and has been developed within the radiation protection section at the National Centre for Oncological Hadrontherapy situated in Pavia. In the first part, the radiation field produced by protons and carbon ions interactions with structural materials at different energies was investigated. The main instrument of analysis is the Monte Carlo code for particle transport FLUKA, supported by experimental measurements in the treatment room carried out with the rem counter LUPIN, designed for pulsed neutron fields dosimetry. This first step allowed an analysis of both the angular and energetic instrumental response and a comparison of experimental results with simulations. The second part proposes a description of the technique for beam loss positions reconstruction around the acceleration ring at CNAO based on the application of unfolding codes.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.