https://doi.org/10.1140/epjp/s13360-020-00967-8
Regular Article
Spin and entanglement in general relativity
1
Tel Aviv University, 69978, Ramat Aviv, Israel
2
Ariel University, 40700, Ariel, Israel
3
Bar Ilan University, 52900, Ramat Gan, Israel
Received:
6
September
2020
Accepted:
25
November
2020
Published online:
4
January
2021
In a previous paper, we have shown how the classical and quantum relativistic dynamics of the Stueckelberg–Horwitz–Piron [SHP] theory can be embedded in general relativity (GR). We briefly review the SHP theory here and, in particular, the formulation of the theory of spin in the framework of relativistic quantum theory. We show here how the quantum theory of relativistic spin can be embedded, using a theorem of Abraham, Marsden and Ratiu and also explicit derivation, into the framework of GR by constructing a local induced representation. The relation to the work of Fock and Ivanenko is also discussed. We show that in a gravitational field there is a highly complex structure for the spin distribution in the support of the wave function. We then discuss entanglement for the spins in a two body system.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.