https://doi.org/10.1140/epjp/s13360-020-01040-0
Regular Article
Asymptotic behaviors of mixed-type vector double-pole solutions for the discrete coupled nonlinear Schrödinger system
1
School of Mathematics and Physics, North China Electric Power University, 102206, Beijing, China
2
College of Science, China University of Petroleum, 102249, Beijing, China
Received:
19
July
2020
Accepted:
22
December
2020
Published online:
8
January
2021
In this paper, we analyze the asymptotic behaviors of mixed-type vector double-pole solutions for the discrete coupled nonlinear Schrödinger system with the focusing-focusing or focusing-defocusing nonlinearities applied in optical waveguide arrays. First of all, based on the bright-bright and bright-dark vector two-soliton solutions given by the Hirota method, we construct the mixed-type vector double-pole solutions via the limit technique. Then, through a modified asymptotic analysis method, we obtain the exact expressions of all asymptotic solitons in the vector double-pole solutions. Further, we investigate the characteristics of soliton interactions in the vector double-pole solutions and find some special properties different from the usual vector two-soliton interactions, like each asymptotic soliton is localized in a curve rather than a line, the interacting bright or dark solitons separate from each other in a logarithmical law and the separation acceleration decreases exponentially with the relative distance.
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021. corrected publication 2021