https://doi.org/10.1140/epjp/s13360-020-01010-6
Regular Article
A new equation for period vectors of crystals under external stress and temperature in statistical physics: mechanical equilibrium condition and equation of state
Independent Researcher, Kingston, Ontario, Canada
Received:
25
August
2020
Accepted:
9
December
2020
Published online:
6
January
2021
Starting with the rigorous derivation of the work done on the center cell by external forces, a new equation is derived for the period vectors (cell edge vectors) in crystals under external stress and temperature. Since the equation is based on the principles of statistical physics, it applies to both classical and quantum systems. The existing theory for crystals under external pressure is covered as a special case. The new equation turns out to be the mechanical equilibrium condition and the equation of state for crystals under external stress and temperature. It may be used to predict crystal structures and to study structural phase transitions and crystal expansions. For linear elastic crystals, it takes the microscopic and temperature-dependent form of the generalized Hooke’s law, and may therefore be used to calculate the corresponding elastic constants. It should be helpful in studying piezoelectric and piezomagnetic materials, as the period vectors change with external stress. It is also consistent and can be combined with the previously derived corresponding one for Newtonian dynamics.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.