https://doi.org/10.1140/epjp/s13360-020-00543-0
Regular Article
A new self-consistent approach of quantum turbulence in superfluid helium
1
Joint Quantum Centre Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
2
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304, Nice Cedex 4, France
a
luca.galantucci@newcastle.ac.uk
Received:
9
March
2020
Accepted:
17
June
2020
Published online:
6
July
2020
We present the Fully cOUpled loCAl model of sUperfLuid Turbulence (FOUCAULT) that describes the dynamics of finite temperature superfluids. The superfluid component is described by the vortex filament method while the normal fluid is governed by a modified Navier–Stokes equation. The superfluid vortex lines and normal fluid components are fully coupled in a self-consistent manner by the friction force, which induces local disturbances in the normal fluid in the vicinity of vortex lines. The main focus of this work is the numerical scheme for distributing the friction force to the mesh points where the normal fluid is defined (stemming from recent advances in the study of the interaction between a classical viscous fluid and small active particles) and for evaluating the velocity of the normal fluid on the Lagrangian discretisation points along the vortex lines. In particular, we show that if this numerical scheme is not careful enough, spurious results may occur. The new scheme which we propose to overcome these difficulties is based on physical principles. Finally, we apply the new method to the problem of the motion of a superfluid vortex ring in a stationary normal fluid and in a turbulent normal fluid.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.