https://doi.org/10.1140/epjp/i2019-12904-7
Regular Article
Global nonlocal viscoelastic dynamics of pulsatile fluid-conveying imperfect nanotubes
1
School of Mechanical Engineering, University of Adelaide, 5005, Adelaide, South Australia, Australia
2
Department of Mechanical and Construction Engineering, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
* e-mail: ali.farajpourouderji@adelaide.edu.au
Received:
13
May
2019
Accepted:
21
July
2019
Published online:
6
November
2019
This article aims to analyse the global nonlocal dynamics of imperfect nanoscale fluid-conveying nanotubes subject to pulsatile flow. The nanotubes are assumed to be viscoelastic. Utilising nonlocal strain gradient theory, Beskok-Karniadakis assumptions, Kelvin-Voigt scheme and Euler-Bernoulli theory, the coupled size-dependent equations are presented to account for the size effects for the nanoscale fluid and solid. Additionally, Coriolis and centrifugal accelerations, imperfection effects are considered in this article. Using different parameters, the response of the system is plotted and investigated. This investigation shows that the bifurcation response for transverse and longitudinal direction is highly dependent on the imperfection of nanotubes, the velocity and frequency of pulsatile flow. Moreover, varying different velocity components results in different responses. The preliminary results show that imperfections in fluid-conveying nanotubes reduce the chaos region.
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature, 2019