https://doi.org/10.1140/epjp/i2017-11754-7
Regular Article
Dynamic modeling of porous heterogeneous micro/nanobeams
Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
* e-mail: febrahimy@eng.ikiu.ac.ir
Received:
6
November
2016
Accepted:
11
October
2017
Published online:
14
December
2017
In the present paper, the thermo-mechanical vibration characteristics of a functionally graded (FG) porous microbeam subjected to various types of thermal loadings are investigated based on modified couple stress theory and exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which the shear deformation effect is verified without the shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of the FG micro/nanobeam. The temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Hamilton’s principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters, such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature, 2017