https://doi.org/10.1140/epjp/i2017-11740-1
Regular Article
A convective study of Al2O3-H2O and Cu- H2O nano-liquid films sprayed over a stretching cylinder with viscous dissipation
1
Department of Mathematics, Faculty of Science, King Abdulaziz University, 21577, Jeddah, Saudi Arabia
2
Departement of Mathematics, Government Superior Science College (Higher Education Department) Khyber Pakhtunkhwa, Peshawar, Pakistan
3
Department of Mathematics, City University of Science and Information Technology (CUSIT), Peshawar, Pakistan
* e-mail: tazagulsafi@yahoo.com
** e-mail: tazagul@cusit.edu.pk
Received:
24
September
2017
Accepted:
3
October
2017
Published online:
28
November
2017
This study is related with the analysis of spray distribution considering a nanofluid thin layer over the slippery and stretching surface of a cylinder with thermal radiation. The distribution of the spray rate is designated as a function of the nanolayer thickness. The applied temperature used during spray phenomenon has been assumed as a reference temperature with the addition of the viscous dissipation term. The diverse behavior of the thermal radiation with magnetic and chemical reaction has been cautiously observed, which has consequences in causing variations in the spray distribution and heat transmission. Nanofluids have been used as water-based like Al2O3-H2O, Cu- H2O and have been examined under the consideration of momentum and thermal slip boundary conditions. The basic equations have been transformed into a set of nonlinear equations by using suitable variables for alteration. The approximate results of the problem have been achieved by using the optimal approach of the Homotopy Analysis Method (HAM). We demonstrate our results with the help of the numerical (ND-Solve) method. In addition, we found a close agreement of the two methods which is confirmed through graphs and tables. The rate of the spray pattern under the applied pressure term has also been obtained. The maximum cooling performance has been obtained by using the Cu water with the small values of the magnetic parameter and alumina for large values of the magnetic parameter. The outcomes of the Cu-water and Al2O3-H2O nanofluids have been linked to the published results in the literature. The impact of the physical parameters, like the skin friction coefficient, and the local Nusselt number have also been observed and compared with the published work. The momentum slip and thermal slip parameters, thermal radiation parameter, magnetic parameter and heat generation/absorption parameter effects on the spray rate have been calculated and discussed.
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature, 2017