https://doi.org/10.1140/epjp/i2017-11347-6
Regular Article
Evolution of complexity in a resource-based model
Departamento de Física, Universidade Federal de Pernambuco, 52171-900, Recife-PE, Brazil
* e-mail: paulo.acampos@ufpe.br
Received:
21
November
2016
Accepted:
16
January
2017
Published online:
15
February
2017
Through a resource-based modelling the evolution of organismal complexity is studied. In the model, the cells are characterized by their metabolic rates which, together with the availability of resource, determine the rate at which they divide. The population is structured in groups. Groups are also autonomous entities regarding reproduction and propagation, and so they correspond to a higher biological organization level. The model assumes reproductive altruism as there exists a fitness transfer from the cell level to the group level. Reproductive altruism comes about by inflicting a higher energetic cost to cells belonging to larger groups. On the other hand, larger groups are less prone to extinction. The strength of this benefit arising from group augmentation can be tuned by the synergistic parameter . Through extensive computer simulations we make a thorough exploration of the parameter space to find out the domain in which the formation of larger groups is allowed. We show that formation of small groups can be obtained for a low level of synergy. Larger group sizes can only be attained as synergistic interactions surpass a given level of strength. Although the total resource influx rate plays a key role in determining the number of groups coexisting at the equilibrium, its function on driving group size is minor. On the other hand, how the resource is seized by the groups matters.
© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg, 2017