https://doi.org/10.1140/epjp/i2017-11280-8
Regular Article
The evolution of piecewise polynomial wave functions
Department of Quantum Science, RSPE, Australian National University, ACT 2601, Canberra, Australia
* e-mail: mark.andrews@anu.edu.au
Received:
5
October
2016
Accepted:
2
December
2016
Published online:
12
January
2017
For a non-relativistic particle, we consider the evolution of wave functions that consist of polynomial segments, usually joined smoothly together. These spline wave functions are compact (that is, they are initially zero outside a finite region), but they immediately extend over all available space as they evolve. The simplest splines are the square and triangular wave functions in one dimension, but very complicated splines have been used in physics. In general the evolution of such spline wave functions can be expressed in terms of antiderivatives of the propagator; in the case of a free particle or an oscillator, all the evolutions are expressed exactly in terms of Fresnel integrals. Some extensions of these methods to two and three dimensions are discussed.
© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg, 2017