https://doi.org/10.1140/epjp/i2012-12028-8
Regular Article
Splitting of degenerate states in one-dimensional quantum mechanics
1
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, 721 302, Kharagpur, India
2
Department of Physics & Meteorology, Indian Institute of Technology, 721 302, WB, Kharagpur, India
3
Department of Physics & Meteorology and Centre for Theoretical Studies, Indian Institute of Technology, 721 302, WB, Kharagpur, India
4
Department of Physics and University Scholars Programme, National University of Singapore, Kent Ridge, Singapore
Received:
30
September
2011
Accepted:
9
February
2012
Published online:
12
March
2012
A classic “no-go” theorem in one-dimensional quantum mechanics can be evaded when the potentials are unbounded below, thus allowing for novel parity-paired degenerate energy bound states. We numerically determine the spectrum of one such potential and study the parametric variation of the transition wavelength between a bound state lying inside the valley of the potential and another, von Neumann-Wigner-like state, appearing above the potential maximum. We then construct a modified potential which is bounded below except when a parameter is tuned to vanish. We show how the spacing between certain energy levels gradually decreases as we tune the parameter to approach the value for which unboundedness arises, thus quantitatively linking the closeness of degeneracy to the steepness of the potential. Our results are generic to a large class of such potentials. Apart from their conceptual interest, such potentials might be realisable in mesoscopic systems thus allowing for the experimental study of the novel states. The numerical spectrum in this study is determined using the asymptotic iteration method which we briefly review.
© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg, 2012