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Abstract. The question is asked: what are new size-dependent effects characteristic of the nanoscale range
which justify considering ‘dynamics on the nanoscale’ as a scientific area in its own right rather than
merely an extension of existing knowledge to a different parameter range. A preliminary list of such effects
is drawn up. It is shown to include many challenging unsolved problems as well as a number of fundamental
investigations which are more or less advanced in development at the present time.

1 Introduction

Nano-physics and, more generally, the nano-sciences are
new areas of research which encompass several related
fields, extending from molecular and cluster physics to
novel materials and including also the study of certain
types of biological system. Usually, the subject is ap-
proached from the perspective of its applications because
they are so numerous and important, but the question
does arise: is nanoscience a new field in its own right, or
simply an extension of what was known previously on a
different scale?

Behind this question is the thought that defining a
field entirely from its applications is not really sufficient
to determine a genuine subject area. More fundamentally,
within the conceptual framework of physics, one thinks
first of quantum mechanics for so-called ‘microscopic sys-
tems’ (meaning those of atomic size or smaller) and of
classical mechanics for allegedly ‘large’ systems and there
seems to be no room in principle for anything else different
in between. So, the question posed here is really whether
the words ‘nano’ and ‘meso’ refer simply to an intermedi-
ate scale of size or whether there are indeed new physical
effects in this range which justify considering the nano-
sciences as a new and different field, i.e. a true subject
with its own specific effects and emblematic quests.

In part, an answer to this question is implicit, since
quantum physics, molecular dynamics, cluster and solid
state physics, molecular biology, etc. all congregate around
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systems on this scale. An interface between such a
formidable array of different research areas, each with its
specific array of methods, obviously defines an important
boundary. However, what one is really looking for here is
a catalogue of phenomena characteristic of nano-science,
intimately related to the range of sizes involved in the
DYSON meetings.

The concept of ‘size’ is in principle one of the sim-
plest measures one can imagine. In quantum mechanics,
length is a well-defined operator, and we can also think of
an experimentally defined size, the scale of which is deter-
mined by the diameter of an atom of Hydrogen, i.e. by the
atomic unit of length. Thus far, everything is simple. Life
becomes a little more complicated (as will be described)
when we ask what we actually wish to measure, because
(as is usual in quantum mechanics) the method of mea-
surement is crucial and must also be taken into account
in order to decide what is ‘large’ and what is properly re-
garded as ‘small’ in a given physical system. Finally, we
will consider the emergence of temperature and entropy,
which can also be regarded as markers for the emergence
of the nanoscale.

In order to address the issue raised in the title of this
review, we need to consider where nano-science ‘fits’ in
between systems smaller than atoms (nuclear physics) and
systems of a size larger than ‘nano’ (the meso-scale). In
practice, for the purpose of this review, we take the nano-
scale as extending from one to several hundred nanometres
and the meso-scale to extend beyong the nanoscale up to
the sizes of large clusters or large biological molecules.

The purpose of the present review is NOT to reca-
pitulate examples of well-documented effects which can
be understood simply by extending principles valid for
other scale sizes into the nano-range. Rather, the intention
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is to identify issues which are either specific to the nano-
range or which arise differently from any other context, so
that we can regard them as characteristic of a new area.
We begin by considering ‘size’ in the quantum regime and
then turn to a catalogue of effects which arise on the ‘nano’
to ‘meso’ scale.

2 Size and scattering length in nuclear
physics

One of the best examples of a determination of size by
direct measurement in a quantum system occurs in parti-
cle scattering and is exemplified in Nuclear Physics. The
purpose of the experiment is to probe the structure (the
interaction potential) of the scattering centre by observ-
ing the distribution and/or energy spectrum of the scat-
tered particles. This problem, sometimes termed ‘inverse
scattering’ because it implies an unfolding of the observed
spectrum to determine the scattering potential, is treated
in some detail in a number of textbooks (e.g. [1]) so we
recall only the essential points.

The key to understanding the issues involved is the
reflect on the nature of the scattering potential, not only
in nuclear physics, but in any scattering problem. There
are two possibilities. Either the potential falls off slowly
with distance (at or more slowly than 1/r) in which case
the potential is long range, or else it falls off faster than
1/r, in which case we speak of a short range potential
(the Yukawa potential, for example). For a short range po-
tential, there is a characteristic size called the scattering
length (λs) which basically measures how big a target ap-
pears to the incoming particle. To measure the structure
of a scattering centre and deduce its internal properties
correctly, it is necessary that the de Broglie wavelength
of the scattered particle (λDB = h/p) should be much
smaller than λs. This can only be achieved by increasing
the momentum of the scattered particle used as a probe
(which is the basic motivation for building accelerators).
The penalty is of course that if the energy of the scat-
tered particle becomes too high, then ultimately it will
fragment the target. Thus, whether a system is ‘small’ in
this context simply means that it is smaller than the λDB

we can reasonably apply with a scattered particle in or-
der to probe the structure of the short-range scattering
potential.

This problem really illustrates quantum mechanics at
work: the length which can actually be measured depends
on what energy the observer can use for his probe (exactly
as in the gamma ray microscope of Heisenberg [2], when
we use high energy photons instead of material particles
to measure size) and so a target becomes ‘small’ basically
when the inversion of the scattered spectrum can yield
no further information. Schwinger [3] allegedly took this
argument one step further by remarking that any shape
of short range potential of equivalent strength and scat-
tering length would become equivalent to any other for
scattering lengths down below this size, so that no infor-
mation about the shape of the potential (apart from the
scattering length itself) could be deduced from the low en-

ergy scattering spectrum in this case. This was his basic
motivation for setting up effective range theory.

At the opposite end of the size scale, we may ask about
a long-range potential. In principle, the structure of such
a potential would be readily observable, but such a poten-
tial, being very ‘soft’ has no specific length we can asso-
ciate with the scattering. The best approach in this case
is to consider the total scattering cross section and treat
it as σTOT = πr2

s , in which case rs provides the simplest
measure of effective size for such a ‘large’ system.

Thus, ‘size’ in Quantum Mechanics is a rather more
complex issue than appears at first sight, because of what
is basically a consequence of the uncertainty principle: it
depends on the nature of the interaction with a probe
particle and on its de Broglie wavelength in an actual ex-
periment, not simply on the target itself. Quantum Me-
chanics makes physicists deeply aware of the importance
of size. This idea was handed down to us by Niels Bohr,
who believed what was then called ‘microphysics’ to be
essentially different from classical physics and even that
our scientific intuition about it would often be deceptive,
because our sensorial experience is by nature based on the
properties of classical systems [4].

3 ‘Smallness’ and classical physics

I would further like to argue that ‘smallness’ as a funda-
mental property (the barrier between what we can see and
what we can’t) is a fundamental quantum property and
therefore that ‘smallness’ does not even exist as such in
classical physics.

This argument can be based on a famous text by the
French scientist and philosopher Blaise Pascal [5], which
sets out rather clearly the point of view of a classical physi-
cist (or rather ‘natural philosopher’). The context is that
of a discovery by Dutch scientists who had just perfected
the microscope and, having observed some very tiny crea-
tures, declared them to be the smallest possible structures.
Pascal was deeply opposed to this idea. He remarks that,
within these creatures, there must be smaller parts and,
within these parts, there must be atoms. But each of these
atoms, in his view, is like a miniature solar system, with
its planets and, within these, still more even smaller crea-
tures, and so on ad infinitum, leading to a classical theory
of a never-ending sequence of ‘worlds within other worlds’
(sometimes called Pascal’s vertigo) with the apparent con-
sequence that there is no minimum or maximum size for
anything.

This theory would apply, not only to material objects,
but would extend also to empty space, which thus becomes
infinitely divisible (i.e. continuous) as in Einstein’s theory
of Relativity [6].

Even before the advent of Quantum Mechanics, it was
becoming clear (mainly through the work of Gibbs [7])
that this infinite ‘depth’ of space and of matter could not
exist. A key point is stressed by Dirac in his book on the
Principles of Quantum Mechanics [8], in which he points
out that, if classical physics (by which he understands
something close to Pascal’s description) were correct,
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the Equipartition Theorem of thermodynamics would lead
to all specific heats being infinite. The fact that they are
finite is one of the many fundamental reasons for believ-
ing in the quantum model, which sets a minimum ‘size’
for observable effects. Indeed, this relates to a very fun-
damental problem in contemporary physics: how can one
reconcile the continuous space apparently required by Rel-
ativity (excepting perhaps some alternatives, explored by
Célérier and Nottale [9] and others [10]) with the ‘gran-
ular’ structure of space and matter implicit in Quantum
theory? This dichotomy of modern physics is both trou-
bling and unresolved. I return to equipartition and size
below.

4 The correspondence principle and the issue
of ‘Quantum Chaos’

The Correspondence Principle attempts to bridge the gap
between Quantum Mechanics and Classical Physics and so
it covers the full range of sizes from the ground state of an
atom to a (somewhat hypothetical) ‘giant Rydberg atom’
which would obey rules obtained from Classical Mechan-
ics and is referred to as the ‘classical limit’. Therefore, it
encompasses the nano- and meso-scales.

The connection between classical and quantum sys-
tems works pretty well if the classical dynamics of the
system considered are fully integrable (closed classical or-
bits). In this case, one just applies the Bohr-Sommerfeld
quantisation rule

∫ pdq = (n + 1/2)�ω

where the integration is carried out over a closed orbit for
conjugate classical variables p and q and n is the principal
quantum number.

However, as first pointed out by Einstein [11], there
is a problem in applying this rule if the orbits do not
close. Orbits which do not close are in fact very common
in classical mechanics, as discovered by Poincaré [12] for
the three-body problem. They even occur for fairly simple
situations, such as the classical pendulum above a magnet.
By attaching a pen to the pendulum, so that it writes on a
sheet of paper, one can verify that the pendulum will never
retrace its steps, i.e. that within the limits defined by the
total energy of the motion, the pendulum will ‘write’ all
over the surface without the orbit ever closing.

The quantum analogue of this classical system is a
Rydberg atom in a strong magnetic field, and there is
an extensive literature, both experimental and theoretical,
on the transition from quantum to ‘classical’ behaviour in
atomic systems since the original experiments performed
by Garton and Tomkins [13] first drew attention to this
situation.

The real question posed here is complementary to the
one posed by Einstein. He asked: how do you quantise
a classically irregular system, but one can also ask the
opposite question: in general, when one takes a quantum
system to its classical limit, does one recover all of clas-
sical physics or only a part? In other words, do classi-
cally chaotic orbits emerge spontaneously in this limit,

or does one recover only an incomplete form of classical
mechanics?

Originally, it was hoped that a detailed experimental
study of this inverse situation might help to resolve the
long-standing issue raised by Einstein [11]. However, this
is unfortunately not the case: indeed, for a quantum sys-
tem whose underlying dynamics are chaotic, one observes
experimentally the emergence of a great structural com-
plexity in a spectral range corresponding to this limit. It is
sometimes referred to (rather loosely) as a region of ‘quan-
tum chaos’, but in reality, there is no hard evidence that
it is truly ‘chaotic’ in the classical sense. Indeed, there are
good reasons to assert that ‘chaos’ cannot arise at all in a
quantum system. The argument runs as follows.

If we consider a classically chaotic system (for example,
the pendulum and magnet) we expect the pen of the pen-
dulum to write all over the paper within the boundaries
defined by the conservation of energy, or (expressed more
precisely) we expect the system to travel densely through
all accessible regions of phase space. In other words, there
should be no accessible region of phase space which con-
tains no orbit. In order to check this, we must increase the
magnification as far as we can and make sure that we al-
ways find a density of paths which are distinguishable from
each other. If the orbit (whatever its complexity) eventu-
ally ‘closes’, then it is not chaotic. However, performing
this test would in itself violate Quantum Mechanics: if at
some point the orbits approach each other to within a vol-
ume �

N in phase space, then we bump into what one might
term a fundamental granularity of Quantum Physics: we
are not allowed to ask what happens within such a small
volume and so the question: is such an orbit chaotic or is
it not? No longer has any meaning.

This is a very fundamental issue in terms of our un-
derstanding of quantum physics, and it seems fair to say
that it is unresolved. It connects with the fundamen-
tal dichotomy between the two great theories of modern
physics: quantum physics and relativity. Many attempts
have been made to ‘join’ one theory onto the other, but
the fact is that the nature of space-time in quantum the-
ory is not the same as it is in relativity, precisely because
of the ‘granularity’ referred to above.

The range of sizes within which such discrepancies be-
come important is the nanoscale range. Unfortunately, no
experiments so far have been able to uncover clear evi-
dence of the failing of one or other approach to the in-
terpretation, the most complete test being probably the
study of Rydberg atoms in crossed electric and magnetic
fields with full separation of circular polarisations, per-
formed at Imperial College [14,15] and analysed at the
Queens University, Belfast [16,17]. In short, issues relating
to the field of ‘Quantum Chaology’ belong to the subject
of ‘Dynamics at the Nanoscale’ (DYSON).

5 Order to many-body chaos

Another and rather different kind of Order-to-Chaos tran-
sition appears, not as a result of a perturbation by an
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external field (as in the previous example) but as an in-
trinsic property of a many-body system. Instead of tend-
ing towards chaos in the classical limit, such a system,
on the contrary, is subject to underlying chaotic forces
when united but separates into two systems connected by
regular forces when one particle is progressively removed
from all the others. This type of system exists because
few-body systems (starting with three-body systems) are
classically chaotic, as proved by Poincaré [12]. They can
only be quantised by invoking a fictitious ‘independent
particle, mean field theory’, which is subsequently refined
by introducing correlations in order to bring the theoret-
ical results more in line with experiment. In this context,
‘small’ systems are considered to be ‘simple’ while ‘large’
ones are treated as ‘complex’. However, one should bear
in mind that symmetry also plays a role. For example,
spherical closed shells exist in atoms, in certain molecules
and even in metallic clusters, which can restore the mean-
field approximation and ‘simplify’ even the treatment of
a fairly large system. In atomic, molecular and cluster
physics, many-body chaos is successfully treated pertur-
batively through correlations, because electrons are very
prompt and the mean-field approximation works surpris-
ingly well even for rather distorted systems.

In this context, note that ‘size’ no longer has the di-
mension of ‘length’. Rather, it refers to the number of
particles in the system. This is the usual meaning given
to the ‘size’ of a system in nanoscale physics. It is used
to discuss a number of size-related transitions, as listed
below. In this picture, the atoms are regarded as basically
incompressible, so that adding atoms to a system nec-
essarily increases its size. At normal pressures, this will
broadly be true and turns out to yield a very convenient
size parameter.

6 The What is life? transition

It is a simple observational fact that ‘living’ systems al-
ways contain very many atoms or molecules. The smallest
living system (a virus) can contain roughly one thousand
atoms [18]. This raises the interesting challenge: is there a
fundamental size below which life becomes impossible and
(therefore) a fundamental reason for which this should be
the case?

When we observe a living system in a favourable en-
vironment, it will send us, by replicating itself, a definite
signal that it is alive. If we count the atoms (or molecules)
in such a system, we have an estimate of its size. So, it
is a meaningful scientific question to ask what connection
exists between size and viability for a living system.

Schrödinger, in his famous essay What is Life? [19]
asks a related question, which he formulates rather differ-
ently: why are atoms so small? i.e. why are organisms so
large compared to atoms? The answer he suggests is that
life requires exact physical laws. Without enough atoms in
a system, statistical fluctuations become too large for life
to develop. This is not a very precise answer, but seems
to set a lower bound.

Notice also that this issue of life and size is tied in with
Blaise Pascal’s discussion referred to above [5]. On the one
hand, the Dutch scientists whose work he objected to be-
lieved they had found the smallest living beings thanks to
their microscope, but on the other, Pascal [5] was argu-
ing that, according to the laws of science as understood in
classical physics, there was no reason for the existence of
any lower bound.

The question of the smallest living cell has interested
NASA in connection with planetary exploration. Very
small organisms appear in ground water after exhaus-
tive filtration and pose questions as to their origin [20].
Amongst know germs, Mycoplasma and Rickettsia are
about 100 nm in size and qualify as small. Mycoplasma do
replicate as they are a bacteria, not a virus. They depend
on a host (or rich growth medium in a lab) for nutrients
they need in order to survive. Not all mycoplasma species
invade a host cell: some can live outside of the host cell
and can be grown in a rich growth medium as opposed to
a cell culture [21].

One can also ask the opposite question, i.e. what is
the largest living cell? The largest in volume is said to
be the egg of an Ostrich. In linear dimension, the human
body, for example, has neurons running from the base of
the spine to our toes. These are the longest cells in the
human body, some 60 to 90 cm long. However, they are
still microscopically thick and depend on other cells to as-
sist them by providing nutrients. So, one can argue about
the relevance of such answers depending on the degree of
autonomy expected of a living organism.

Nonetheless, what is clear is that the range of sizes
which corresponds best to the possible transition in vi-
ability between inert and living systems falls in the
nanoscale to mesoscale range. Consequently, to modernise
and update Schrödinger’s original question involves re-
search in size-dependent biology relating to what is called
‘nano-science’. Indeed, the observation has already been
made [22] that an inert cluster and a living virus can be
of comparable size, which in itself raises interesting issues
about the difference between them both.

7 Chaos and complexity

Often, scientific activity involving large molecular systems
is justified on the basis of attempting to come to grips with
‘complexity’. The difficulty with this statement is trying
to understand precisely what is meant by ‘complexity’.
Intuitively, one would expect that chaos might be present
at the same time (or for similar systems) as complexity.
However, one must be careful to distinguish mathemati-
cally between what may be very intricate and very com-
plex and what is chaotic. Again, the distinction hinges on
the closure of orbits discussed above. If there is no ‘chaos’
in Quantum Mechanics, then complexity may replace it,
but how should it be defined? One can perhaps seek proce-
dures to regularise orbits which would be chaotic in classi-
cal physics (for example, by considering how they are bun-
dled according to the KAM theorem [23,24]) and describe
these as ‘complex’, but if the definition remains ad hoc
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it can have little scientific value. Thus, although there is
justification for the argument that, in the nanoscale range,
one has to chose the ‘best’ between different approxima-
tions in order to calculate very complex situations, such a
justification is based rather on the limitations of existing
theory than on any new effect one might uncover. If ex-
ploring complexity is to serve as a motivation, then it will
first need to be defined rather precisely in relation to the
nanoscale range.

8 The atom to solid transition

The atom-to-solid transition was frequently described in
many models used to set up the subject described as ‘con-
densed matter’ or ‘solid state physics’ and this descrip-
tion remained unchallenged for many years. Indeed, it
found its way into a variety of textbooks, more or less
as a conceptual model of how a solid is built up atom by
atom, the simplest picture being a long linear chain. Lead-
ing contributions in developing this picture were made by
Debye [25] (see e.g. [26]), Einstein [27], Blackman [28] and
many others.

While this description is of intellectual value in pic-
turing the nature of the solid state, recent researches in
nanophysics have demonstrated very clearly that the origi-
nal models as described in many textbooks are much over-
simplified. Of course, what had not been expected is that
one might be able one day to ‘build up’ a solid experimen-
tally, i.e. to construct size-selected clusters composed of
many atoms and to ‘dial’ the size of such systems between
just a few (the atomic of molecular limit) and many thou-
sands (the solid-state limit). It was therefore no longer a
purely intellectual exercise to imagine how a solid might
progressively be built up. The experiment became a real
one.

Furthermore, with the advent of these new techniques
and the birth of cluster physics, it became clear that one
could track different physical quantities (speed of sound,
conductivity, magnetism, optical properties, etc.) as a
function of the size of the cluster, thus opening up new
directions in the study to the atom-to-solid transition as
a function of the number of atoms in the cluster, the type
of atom, the kind of solid, etc.

On the way of these studies, new effects were discov-
ered which had not been suspected before, such as the
formation of closed shells consisting of many atoms for
alkali or conducting clusters [29] (with the discovery of
associated optical ‘giant resonances’ [30]), the discovery
of magic numbers also for insulating and van der Waals
clusters [31], etc. Without going into great detail about
all the new and interesting effects, the main outcome of
this research has been to re-write the material present in
the opening chapters of the ‘old’ textbooks on solid state
physics.

It is now understood that there is not one, but there
are many transitions from the atomic to the solid state
limits even for a solid built up from a single species. In
fact, there are as many points of transition as there are
physical parameters used to ‘track’ the evolution from one

limit to the other or, put another way, the transition oc-
curs for different sizes according to what property one is
measuring. Also, each species (each type of atom) has its
own form of evolution, which may bear similarities within
a family of atoms, but remains unique as to the detail. For
a review concerning such transitions, see [32].

All of this is now better understood thanks to
nanophysics. Indeed, this is a fundamentally new contri-
bution which has come from this area of research and falls
very clearly within the scope of this particular area of
research.

9 Faraday screening on the nanoscale

The endohedral encapsulation of atoms and molecules
such as occurs in metallofullerenes, in ‘Russian doll’
molecules, ‘peapod’ nanotubes, etc. is an effect associated
with the nanoscale and connected with a variety of poten-
tial applications. Since many of the molecules and surfaces
involved (fullerenes and graphene, for example) are good
conductors, the question arises: can such surfaces produce
a ‘Faraday cage’ on the nanoscale? If so, then there would
be numerous applications. For example, an atom placed
at any position inside such a ‘cage’ would be isolated elec-
trically from the world outside. This would imply, as first
suggested by Harneit [33] that an encapsulated atom with
intrinsic spin could be oriented in a given direction and
would subsequently retain this orientation. Thus, a ‘string’
of encapsulated atoms arranged in a line could be set up
with mutual spin orientations defining qbits to form the
register of a quantum computer, the attraction being that
such a system would be small and could be incorporated
on a ‘chip’ rather than necessitating extensive atomic trap-
ping and cooling methods.

What invites caution in attempting to extend Faraday
screening to very small sizes is the ‘skin effect’ in elec-
tromagnetism, the scale size of which is frequency de-
pendent. It is therefore pretty clear that the efficiency of
screening must be frequency dependent and that, when
the skin depth becomes comparable to atomic size, effects
connected with the perfect conductor, such as Faraday
screening, will no longer act in quite the same way as in
classical electromagnetism.

This situation has been studied theoretically [34] and
leads to the following picture. If an atom is trapped en-
dohedrally inside a conducting sphere of nanoscale size,
then this sphere will itself possess a Mie resonance [35] (in
the case of a fullerene, this is simply the spectral feature
called a ‘giant resonance’). In other words, the charge dis-
tribution will set up an oscillation in response to an exter-
nal electromagnetic field. In simple terms, the confining
sphere acts like an antenna, and the encapsulated atom
‘sits’ within the field of this antenna.

At zero frequency, the charge distribution on the per-
fectly conducting sphere indeed adjusts itself so as to can-
cel the influence of external static fields within its volume.
However, this does not remain as the frequency is raised
and approaches the Mie resonance. To the contrary, when
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the frequency of the external radiation becomes Mie reso-
nant, the metallic sphere turns into a miniature amplifier,
and the atom placed inside is subjected to a strongly en-
hanced oscillating field. As the frequency of the incident
radiation is raised still further and well above resonance,
this enhancement fades away and, in fact, the screening ef-
fect disappears completely, giving place to full penetration
of the volume inside the sphere. There is a simple function
to describe this ‘frequency dependent Faraday screening’
which, again, is a typical nanoscale phenomenon and, not
surprisingly, follows the shape of the Mie resonance of the
sphere.

Thus, in applications involving screening on the
nanoscale, it is important to take account of the frequency
bath in which the system is placed.

An interesting consequence of this study relates to the
observation of inner shell spectra of atoms and molecules.
The reason for which the outer electronic shells of atoms
do not prevent the excitation of inner shells by screening
is basically the same: the X-rays exciting the system are
of such high frequency that they penetrate the full atomic
volume. However, it is only on the nanoscale that this
extension of the Faraday screening principle acquires true
significance. If, in place of a perfect conducting sphere, one
has a fullerene molecule, in which the charge distribution
is not evenly distributed over a spherical surface, then the
effects described (both screening and anti-screening) will
be less pronounced. However, they continue to dominate
the response, as witnessed by the very existence of a giant
resonance for such systems.

10 Confinement and interacting resonances

When atoms are confined in cavities of quantum size
(which can happen on the nanoscale) then a variety of
new effects can appear, depending on the symmetry of
the confinement, its rigidity and the relative sizes of the
atom and the confining cavity.

The simplest situation is rigid confinement at the cen-
tre of a spherical cavity. In this case, we expect to find
a spectrum containing: (1) the resonances of the confined
atom, (2) the resonances of the confining sphere and (3)
the resonances of a spherical cavity of quantum size, or
‘confinement resonances’ [36]. Since the confined atom and
host cavity form a single system, all these resonances inter-
act and must obey the general rules of K matrix theory for
any system of interacting particles [37] implying avoided
crossings, symmetry reversals, width fluctuations, etc. as
a result of the interactions.

However, many such effects will be hidden from view if
the confinement is (1) off-centre and (2) not rigid, which
is likely to occur if the force between the atom and the
confining surface is attractive rather than repulsive and of
the size of the confining cavity is significantly larger than
the size of the confined atom. If the atom ‘rattles’ inside
the confining sphere, then phase cancellation effects will
tend to mask confinement resonances. In order to observe
them clearly, it is therefore important to chose situations
in which the confined atom is not free to move relative

to the confining sphere, for example because their relative
sizes are close to each other [38].

11 Size and temperature

Strictly speaking, a single temperature T is defined for an
ideal gas containing many particles, and this definition is
the starting point in thermodynamics. It would, however,
be extremely restrictive to stay only with this definition
and with such ideal objects as the Black Body to make
use of temperature, since there are so many other systems
and situations for which a temperature is useful, even if
the definition ceases to be quite so rigorous.

For example, we extend the temperature T to an op-
tically thin plasma (as in stellar atmospheres [39]) by in-
troducing the Local Thermodynamic Equilibrium (LTE),
in which case we allow the radiation emitted by the
constituents to escape from the plasma without being
reabsorbed. The radiation is, in this sense, outside the
equilibrium processes of the plasma, although this does
not prevent the radiation escaping from such a plasma
conveying the most useful information about its condition.
All we need to postulate is that the ions in this plasma
possess a Maxwell-Boltzmann velocity distribution, from
which we can infer an ion temperature Ti. Similarly, we
can examine the Boltzmann distribution of electrons in
the excited energy levels of the ions and the free elec-
tron distribution from the radiation continuum to define
electron temperatures Te, the only problem being that
these various temperature do exist, but are not in equilib-
rium with each other. Multicomponent systems with dif-
ferent constituent temperatures are of course frequent in
many branches of science. Molecular physicists are per-
fectly accustomed, for example, to analysing molecular
spectra which define one temperature for electronic excita-
tion, another for vibrational and yet another for rotational
excitations.

Usually, such systems are of finite size, but large
enough that one can gloss over the actual influence of size
on the definitions of thermodynamic variables. However,
Jellinek and Goldberg [40] have considered explicitly the
relationship between statistical ensembles (paying special
attention to the especially microcanonical ensemble) and
have re-examined dynamics, the equipartition theorem,
and the notion of a dynamical temperature placing the
emphasis on finite size effects. They introduce a dynami-
cal rather than a purely statistical approach, making no a
priori assumptions about equiprobability and formulate as
a postulate the dynamical equipartition ansatz, which al-
lows them to define dynamical degrees of freedom (rather
than taking ensemble averages) and then use these as their
tools in the analysis.

The dynamical equipartition ansatz is a generalization
of the usual ‘equipartition theorem’. The difference be-
tween them is that this ansatz involves no a priori assump-
tion of equal probability, whereas the more usual ‘theo-
rem’ invoked in Statistical Mechanics does. The ansatz
replaces the concept of equally probable kinematical de-
grees of freedom by the postulate that the time-averaged
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kinetic energy is equally distributed between dynamical
degrees of freedom. The empirical basis for such a pos-
tulate is the intensive nature of thermodynamic tempera-
ture as a state variable. This approach prepares the way
for axiomatic formulations of statistical mechanics and
statistical analysis unencumbered by the assumption of
equiprobability of the degrees of freedom. According to
these authors, their novel formulation is ‘ergodic’ with re-
gard to the actual dynamical behaviour of finite systems,
irrespective of whether the latter are ordered or chaotic. In
the special case where a system explores all the relevant di-
mensions of its configuration space with equal probability,
the dynamical equipartition postulate becomes the tradi-
tional equipartition theorem and the dynamical degrees of
freedom then coincide with the traditional kinematic de-
grees of freedom. Jellinek and Goldberg [40] have applied
their approach and made use of dynamical degrees of free-
dom to analyse structural and phase-like transformations
in atomic clusters.

There are even some implicit situations which carry
the idea of using ‘temperature’ to intellectual extremes,
well beyond the carefully argued situation of the previous
example.

In statistical mechanics, from the ergodic principle, we
assume that the average of a process parameter over time
and its average over a statistical ensemble coincide. So,
we can even imagine introducing a kind of electron ‘tem-
perature’ for single atoms by turning a blind eye to the
nature of the actual ensemble. Famously, Einstein [41] in-
troduced a single two-level atom, placing it in equilibrium
with a radiation field (Principle of Detailed Balance) to
deduce its A coefficient from the Black-Body radiation
law. Today, we prefer to deduce A from quantum field
theory, but it was actually discovered by Einstein in this
somewhat contorted way, with the further twist that the
A coefficient can only be defined for an isolated atom in
the absence of external fields! Quite obviously, there ex-
ists no temperature for a single atom, and even less for an
atom with only two levels, but this idealised argument of
Einstein [41] proved of fundamental importance in Physics
since it introduced for the first time the concept of spon-
taneous emission, which actually results from fluctuations
of the vacuum in quantum field theory.

Clearly, a sensible equilibrium temperature must re-
quire many atoms before it can exist. But just how many
are really needed to achieve a ‘workable’ temperature? Put
in another way, if we create a chain of atoms, at what scale
length will it begin to exhibit a proper thermodynamic
temperature and genuine thermodynamic behaviour?

There have been a number of theoretical studies of
this type of problem. For example, Ness et al. [42] use a
Generalised Langevin Equation (GLE) scheme to study
the thermal transport of low dimensional systems. In this
GLE approach, the central classical region is connected
to two realistic thermal baths kept at two different tem-
peratures [43]. They model one-dimensional atomic chains
connected to these three-dimensional baths. The thermal
transport properties are studied as a function of the chain
length and the temperature difference between the baths.

They obtain two different power laws are obtained for lin-
ear conductance versus chain length. For large temper-
atures and temperature differences, chains longer than
18 atoms present a diffusive transport regime with a
temperature gradient across the system. For lower tem-
peratures and temperature differences, they find a more
ballistic-like regime. Their analysis suggests that the be-
haviour at higher temperature is mainly due to anhar-
monic effects within longer chains.

Again, with a transition occurring around 18 atoms
in a chain, we are into the regime of nanophysics. It is
perhaps also worth noting that, as one increases the size
of a chain or cluster, we enter the range where a photon
emitted from one part of the system can be re-absorbed
in another, which is the first step towards thermal energy
being transported from one part of a cluster to another.
In other words, towards a system which would no longer
be optically ‘thin’.

Most physical systems in one way or another are an-
harmonic. For practical reasons, the vibrational density of
states is usually modelled within the harmonic approxima-
tion, with some partial correction for anharmonicity. The
reason is that the problem of an anharmonic densities of
states has stubbornly resisted a general and exact solution,
which would remain convenient and straightforward in its
applications. However Jellinek and Aleinikava [44] have
recently formulated such a solution within both classical
and quantum mechanics. It is based on the actual dynam-
ical behavior of systems as a function of energy, observed
or monitored on a given time scale, which can be short or
long. The resulting anharmonic densities of states are fully
dynamically informed and, in general, time-dependent. As
such, they lay the ground for the formulation of a new
statistical mechanical framework that incorporating time,
which is ergodic by construction, with respect to the ac-
tual dynamical behaviour of the system.

12 Entropy and the direction of time

Of course, in Thermodynamics, a genuine temperature
does not come alone: when it emerges, entropy must also
be present, as evidenced at the outset in the original for-
mulation by Jellinek and Goldberg [40]. The latter prop-
erty is extremely important, because the Entropy Princi-
ple is the only one in physics to determine the arrow of
Time. This may seem a bit of an abstruse point, but could
well prove a crucial issue relating to the discussion of the
What is Life? [19] transition above, because the evolution
of a living system can only occur in the direction of in-
creasing time, so this direction must at least be definable
for the system in question.

In this connection, systems which are highly symmet-
rical possess an intrinsic order which means that their en-
tropy is essentially different from that of a less ordered
system of similar size. We may therefore infer that the
question of a What is Life? transition is not simply re-
lated to a size but must also be related to the degree of
intrinsic symmetry. If it is too great, then it may prove
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difficult to establish a viable system, because, in this pic-
ture, excessive symmetry would itself act as a barrier to
evolution.

13 The Casimir effect on the nanoscale

The Casimir effect [45] is the force between two uncharged
conducting plates in close proximity to each other and
(like the Einstein A coefficient above) is a quantum field
effect resulting from vacuum fluctuations. This force exists
not only between parallel plates, but also between two
conducting spheres [46] or a sphere and a plate.

To my knowledge, the Casimir force between metal-
lic clusters, or between metallic clusters and a conducting
surface has never been observed. The reason for including
the effect in the present list is that the nanoscale range
is the one in which conducting surfaces and planes first
emerge from the atomic environment as the size of sys-
tems increases. Thus, a force between very closely spaced
conductors is somehow a ‘natural’ situation to investigate
on the nanoscale. Against this general idea, there are of
course the usual difficulties in attempting such a measure-
ment, an important one being that the conducting objects,
whatever their shape, must be uncharged for the Casimir
effect to appear.

Potentially, a scheme for detecting the Casimir force
might involve studying ‘nanobilliards’ for mobile un-
charged metallic clusters deposited on an insulating plane
surface. This configuration clearly belongs to ‘nanoscale
dynamics’. The main problem in performing such an ex-
periment would be that the Casimir force is extremely
small compared to other forces in the system such as typi-
cal interactions between a cluster and a surface. The pres-
ence of a dielectric would also affect the outcome.

14 Conclusion

The present report describes no new results, nor is it in-
tended as a comment on the validity of earlier results.
Rather, it is hoped to summarise effects which are ei-
ther (1) truly specific to the nanoscale or (2) should ap-
pear differently in the nanoscale range. In connection with
DYSON, it is important to create such a list, in order
to ensure that we are dealing with real science involv-
ing new phenomena and not merely with the repetition of
well-known effects on a different scale. Naturally, the au-
thor makes no claim to have drawn up an exhaustive list.
Rather, the intention is to spark off a process by which
participants in this series of scientific meetings may estab-
lish a more complete and more fully researched series of
open topics defining new directions in nanoscale dynamics.

The author thanks Professor Andrey Solov’yov for the oppor-
tunity to review the subject presented here at the DYSON
meeting in Bad Ems and for numerous fruitful exchanges on
all the subjects raised. Special thanks are due to Professor
Julius Jellinek for illuminating discussions on size-dependent
effects in Statistical Mechanics.
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30. J.-P. Connerade, C. Bréchignac, J. Phys. B 27, 3759
31. S. Neukermans, E. Janssens, R.E. Silverans, P. Lievens,

Magic numbers for shells of electrons and shells of atoms
in binary clusters, Unpublished Report from Laborato-
rium voor Vaste-Stoffysica en Magnetisme, Katholieke
Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven,
Belgium (2006)

32. J. Jellinek, Transition fromAtoms to Clusters toCondensed
Matter, Advances in Chemical Physics, Proceedings of the
240 Conference Sciences Great Challenges, edited by A.R
Dinner (John Wiley & Sons, 2015), Vol. 157, p. 25

33. W. Harneit, Phys. Rev. A 65, 032322 (2002)
34. J.-P. Connerade, A.V. Solov’yov, J. Phys. B 38, 807 (2005)
35. G. Mie, Annalen der Phys., Vierte Folge, Band 25, 377

(1908)
36. J.-P. Connerade, V.K. Dolmatov, S.T. Manson, J. Phys. B

33, 2279 (2000)
37. J.-P. Connerade, in Highly Excited Atoms (Cambridge

University Press, Cambridge, 2005), p. 501, Chap. 8
38. A.V. Solov’yov (Private Communication)
39. L. Aller, The Atmospheres of the Sun and Stars, 2nd edn.

(Ronald Press Company, New York, 1963)
40. J. Jellinek, A. Goldberg, J. Chem. Phys. 113, 2570 (2000)
41. A. Einstein, Physikalische Zeitschrift, Band 18, 121 (1917)
42. H. Ness, L. Stella, C.D. Lorenz, L. Kantorovich,

arXiv:1612.00990 (2016)
43. H. Ness, A. Genina, L. Stella C.D. Lorenz, L. Kantorovich,

Phys. Rev. B 93, 174303 (2016)
44. J. Jellinek, D. Aleinikava, J. Chem. Phys. 144, 214103

(2016)
45. H.B.G. Casimir, Proc. Kon. Ned. Akad. Wetensch. B 51,

793 (1948)
46. L.P. Teo, arXiv:1503.07934v1 (2015)

http://www.epj.org
http://arxiv.org/abs/1612.00990
http://arxiv.org/abs/1503.07934v1

	Introduction
	Size and scattering length in nuclear physics
	`Smallness' and classical physics
	The correspondence principle and the issue of `Quantum Chaos'
	Order to many-body chaos
	The What is life? transition
	Chaos and complexity
	The atom to solid transition
	Faraday screening on the nanoscale
	Confinement and interacting resonances
	Size and temperature
	Entropy and the direction of time
	The Casimir effect on the nanoscale
	Conclusion
	Author contribution statement
	References

		2017-04-18T15:07:36+0100
	Preflight Ticket Signature




