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Abstract. We present a statistical mechanics formalism for theoretical description of the process of protein
folding ↔ unfolding transition in water environment. The formalism is based on the construction of the
partition function of a protein obeying two-stage-like folding kinetics. Using the statistical mechanics
model of solvation of hydrophobic hydrocarbons we obtain the partition function of infinitely diluted
solution of proteins in water environment. The calculated dependencies of the protein heat capacities upon
temperature are compared with the corresponding results of experimental measurements for staphylococcal
nuclease and metmyoglobin.

1 Introduction

Proteins are biological polymers consisting of elementary
structural units, amino acids. Being synthesized at ribo-
some, proteins are exposed to the cell interior where they
fold into their unique three dimensional structure. The
process of formation of proteins three dimensional struc-
ture is called the process of protein folding. The correct
folding of proteins is of crucial importance for their proper
functioning.

In a course of tissue irradiation by swift ions emerges a
cascade of diverse physical and chemical processes, which
span over various temporal and spatial scales. These pro-
cesses leading to biological tissue damage are utilized for
the purposes of ion beam cancer therapy (IBCT) [1,2].
Recently it was shown that propagation of ions in the
medium with high linear energy transfer leads to dramatic
increase of the temperature in the vicinity of ion’s trajec-
tory, see reference [3] and references therein. Rapid in-
crease of medium temperature can lead to direct breakage
of chemical bonds in biological molecules, but also influ-
ence the conformational structure of proteins and DNA.
Numerous works are devoted to the description of confor-
mational changes in proteins resulting from temperature
variation, i.e. temperature-induced protein folding and un-
folding transitions. The current state-of-the-art in experi-
mental and theoretical studies of the protein folding pro-
cess are described in recent reviews, see references [4–8]
and references therein.

In this paper we present a theoretical method for the
description of the protein folding process which is based
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on the principles of statistical mechanics. Considering the
process of protein folding as a first order phase transi-
tion in a finite system, we present a statistical mechanics
model for treating the folding ↔ unfolding phase transi-
tion in single-domain proteins. Propagation of swift ion’s
in the biological medium is accompanied by increase of
temperature and ion’s concentrations in the vicinity of
the trajectory. Therefore, the goal of this study is to re-
produce with minimal number of assumptions thermody-
namic behaviour of real particular proteins under the vari-
ation of external conditions, namely temperature and pH
of the solvent. For the time being we do not account for
any kinetic effects related to the temperature spikes in the
vicinity of ions trajectories. The extension of the model to-
wards the description of time-dependent processes can be
developed in later works. The suggested method is based
on the theory developed for the helix ↔ coil transition
in polypeptides discussed in references [9–20] and applied
for folding ↔ unfolding phase transition in single-domain
proteins.

Many papers devoted to the description of thermody-
namics of the protein folding process have been published
since eighties of the previous century, for a comprehensive
review see reference [21]. Here we do not intend to review
all of them but rather refer to the most essential papers
published in the field that are most closely related to the
topic of our research.

A way to construct a parameter-free partition function
for a system experiencing α-helix ↔ random coil phase
transition in vacuo was studied in reference [9]. In ref-
erence [11] we have calculated potential energy surfaces
(PES) of polyalanines of different lengths with respect to
their twisting degrees of freedom. This was done within the
framework of classical molecular mechanics. The calcu-
lated PES were then used to construct a parameter – free
partition function of a polypeptide and to derive various
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thermodynamical characteristics of alanine polypeptides
as a function of temperature and polypeptide length.

We start our approach with the construction of the
partition function of a protein in vacuo, which is the fur-
ther generalization of the formalism developed in refer-
ence [12], accounting for folded, unfolded and prefolded
states of the protein. Our model is based on a number
of assumptions about the system. Most of the assump-
tions are necessary for the factorization of the partition
function of the system. In principle, the factorization of
the partition function implies the statistical independence
of the corresponding subsystems, e.g. protein and water.
In many cases it is a difficult task to estimate analyti-
cally the accuracy of a particular assumption allowing the
partition function factorization. However, the most im-
portant assumptions that are used in our work have been
already intensively discussed and thoughtfully analyzed
in previous papers by Privalov and Makhatadze [22,23],
Flory [24], Murphy and Freire [25], Go [26], Go and
Abe [27], Nemethy and Scheraga [28], Lewis et al. [29],
Kim and Baldwin [30] and Baldwin [31]. So in our work
where appropriate we refer and rely on the results of these
earlier investigations.

In references [32,33] was proposed a way to calcu-
late the thermodynamic characteristics of the flexible
molecules based on the construction of marginal prob-
ability density functions. The approach developed in
that work utilizes the recursive application of the gen-
eralized Kirkwood superposition approximation. In refer-
ences [32,33] it was shown that molecular fluctuations can
be described to good approximation accounting only for
low order correlations in the system.

The analysis of 76 Ising-like models for protein folding
was performed in reference [34]. These models are based on
different assumptions about the system. The relative per-
formance of each assumption was evaluated using the rank
sum statistics. The performed analysis revealed that sim-
ple models which only consider the trade-off between the
loss of conformational entropy ans stabilization from na-
tive inter-residue contacts, are a surprisingly accurate pre-
dictor of two-stateness and relative folding rates of small
single-domain proteins.

For the correct description of the protein folding in
water environment it is of primary importance to con-
sider the interactions between the protein and the solvent
molecules. The hydrophobic interactions are known to be
the most important driving forces of protein folding [35].

An extensive review of the hydrophobic effects in
molecular solutions is presented in references [36,37]. The
investigation of temperature dependence of the hydropho-
bic interaction in protein folding was performed in refer-
ences [31,38]. In reference [39] it was shown that the de-
naturational heat capacity is composed of a large positive
contribution arising from the exposure of apolar groups to
the solvent and a significant negative contribution origi-
nating from the exposure of polar groups. The β propen-
sities of various amino acids and their influence on the
protein stability was studied in reference [40]. A rather
simple but efficient model to calculate the intermolecular

energy contribution to the protein stability was suggested
in reference [41]. The driving forces for the protein dy-
namic and the kinetic cooperativity were investigated in
detail for the well known protein-trypsin inhibitor by Kaya
and Chan in reference [42].

In the present work we present a method allowing
one to construct the partition function of a protein that
accounts for the protein interaction with solvent, i.e.
accounts for the hydrophobic effect.

We treat the hydrophobic interactions in the system
using the statistical mechanics formalism developed in ref-
erence [43] for the description of the thermodynamical
properties of the solvation process of aliphatic and aro-
matic hydrocarbons in water. The water molecules only
form the protein’s first solvation shell are considered to
be interacting with the protein hydrophobic surface. The
role of the water solvations shells on the rate of protein
folding is discussed in reference [44]. However, accounting
solely for hydrophobic interactions is not sufficient for the
proper description of the energetics of all conformational
states of the protein and one has to take electrostatic in-
teractions into account. In the present work the electro-
static interactions are treated within a similar framework
as described in reference [45].

All the aforementioned works include free parameters
that are fitted to reproduce well experimental or molecu-
lar dynamics simulations. In the present paper we present
a simple but quantitative model for the description of the
protein’s thermodynamic properties and focus on the fun-
damental physical effects that govern the protein folding
process. To the best of our knowledge there is no such sta-
tistical mechanics approach, which can be applied for real
proteins and reproduces well their heat capacity curves
under various values of pH with only few parameters
having clear physical meaning, which cannot be derived
analytically.

We have applied the developed statistical mechan-
ics model of protein folding for two globular proteins,
namely staphylococcal nuclease and metmyoglobin. These
proteins have simple two-stage-like folding kinetics and
demonstrate two folding ↔ unfolding transitions, referred
as heat and cold denaturation, see references [46,47]. The
comparison of the results of the theoretical model with
that of the experimental measurements shows the appli-
cability of the suggested formalism for an accurate de-
scription of various thermodynamical characteristics in
the system, e.g. heat denaturation, cold denaturation, in-
crease of the reminiscent heat capacity of the unfolded
protein, etc.

Our paper is organized as follows. In Section 2.1 we
present the formalism for the construction of the parti-
tion function of the protein in water environment and jus-
tify the assumptions made on the system’s properties. In
Section 3 we discuss the results obtained with our model
for the description of folding ↔ unfolding transition in
staphylococcal nuclease and metmyoglobin. In Section 4
we summarize the paper and suggest several ways for a
further development of the theoretical formalism.
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2 Theoretical methods

2.1 Partition function of a protein

To study thermodynamic properties of the system one
needs to investigate its potential energy surface with re-
spect to all the degrees of freedom. For the description of
macromolecular systems, such as proteins, efficient model
approaches are necessary.

The most relevant degrees of freedom in the protein
folding process are the twisting degrees of freedom along
its backbone chain [9,12]. The degrees of freedom of a
protein can be classified as stiff and soft ones. We call the
degrees of freedom corresponding to the variation of bond
lengths, angles and improper dihedral angles as stiff, while
degrees of freedom corresponding to the angles ϕi and ψi
are soft degrees of freedom [9]. The stiff degrees of free-
dom can be treated within the harmonic approximation,
because the energies needed for a noticeable structural re-
arrangement with respect to these degrees of freedom are
about several eV, which is significantly larger than the
characteristic thermal energy of the system (kT), being at
room temperature equal to 0.026 eV [16–18,48–50].

A Hamiltonian of a protein is constructed as a sum of
the potential, kinetic and vibrational energy terms. As-
suming the harmonic approximation for the stiff degrees
of freedom it is possible to derive the following expression
for the partition function of a protein in vacuo being in a
particular conformational state j [9,51]:

Zj=Aj(kT )3N−3− ls
2

×
∫
ϕ∈Γj

. . .

∫
ψ∈Γj

e−εj({ϕ,ψ})/kTdϕ1 . . . dϕndψ1 . . . dψn,

(1)

where T is the temperature, k is the Boltzmann constant,
N is the total number of atoms in the protein, ls is the
number of soft degrees of freedom, Aj is defined as follows:

Aj =

⎡
⎢⎣VjM

3/2
√
I
(1)
j I

(2)
j I

(3)
j

∏ls
i=1

√
μ
s(j)
i

(2π)
ls
2 π�3N

∏3N−6−ls
i=1 ω

(j)
i

⎤
⎥⎦ . (2)

Aj is a factor which depends on the mass of the protein
M , its three main momenta of inertia I(1,2,3)

j , specific vol-
ume Vj , the frequencies of the stiff normal vibrational
modes ω

(j)
i and on the generalized masses μ

s(j)
i corre-

sponding to the soft degrees of freedom [9]. εi in equa-
tion (1) describes the potential energy of the system cor-
responding to the variation of soft degrees of freedom.
Integration in equation (1) is performed over a certain
part of a phase space of the system (a subspace Γj) cor-
responding to the soft degrees of freedom ϕ and ψ. The
form of the partition function in equation (1) allows one
to avoid the multidimensional integration over the whole
coordinate space and to reduce the integration only to
the relevant parts of the phase space. εj in equation (1)

denotes the potential energy surface of the protein as a
function of twisting degrees of freedom in the vicinity of
protein’s conformational state j. Note that in general the
proper choice of all the relevant conformations of protein
and the corresponding set of Γj is not a trivial task.

One can expect that the factors Aj in equation (1)
depend on the chosen conformation of the protein. How-
ever, due to the fact that the values of specific volumes,
momenta of inertia and frequencies of normal vibration
modes of the system in different conformations are ex-
pected to be close [12,52], the values of Aj in all confor-
mations become nearly equal, at least in the zero order
harmonic approximation, i.e. Aj ≡ A. Another simplifi-
cation of the integration in equation (1) comes from the
statistical independence of amino acids. We assume that
within each conformational state j all amino acids can
be treated statistically independently, i.e. the particular
conformational state of ith amino acid characterized by
angles ϕi ∈ Γj and ψi ∈ Γj does not influence the poten-
tial energy surface of all other amino acids, and vice versa.
This assumption is known as Flory isolated pair hypoth-
esis [24]. Despite the fact that isolated pair hypothesis is
not always a good approximation (see e.g. [53]) it is still
quite reasonable for the construction of the partition func-
tion of the native (i.e. rigid and thus harmonic) conforma-
tional state of the protein. Here we refer to the analogy
with the Einstein’s model for solids treating all the atoms
of an ideal solid as statistically independent [54]. This
model reproduces quite well the thermodynamic charac-
teristics of solids. The very similar assumptions on the
statistical independence of constituting atoms and, conse-
quently, amino acids can be utilized for the description of
the thermodynamical characteristics of a structural (na-
tive) or any compact tightly bound state of a protein.
In unfolded states the flexibility of the protein backbone
chain leads to a significant variation of distances between
atoms, therefore the interaction between particular atoms
changes substantially in different random coil conforma-
tions. This fact can lead to a considerable correlation in
the motion of amino acids in the protein [53]. An accu-
rate accounting (both analytical and computational) for
the interaction between distant atoms in unfolded state
of the protein is extremely difficult (for the analytical ap-
proach to the problem see Ref. [55]). In this work we as-
sume that interaction between the distant backbone amino
acids can be neglected in the the unfolded protein states.
See Appendix and therein the discussion justifying this
assumption.

With the above mentioned assumptions the partition
function of a protein Zp (without any solvent) reads as:

Zp = A(kT )3N−3− ls
2

×
ξ∑
j=1

a∏
i=1

∫ π

−π

∫ π

−π
exp

(
− ε

(j)
i (ϕi, ψi)
kT

)
dϕidψi, (3)

where the summation over j includes all ξ statistically
relevant conformations of the protein, a is the number of
amino acids in the protein and ε(j)i is the potential energy
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surface as a function of twisting degrees of freedom ϕi and
ψi of the ith amino acid in the jth conformational state
of the protein. The exact construction of ε(j)a (ϕi, ψi) for
various conformational states of a particular protein will
be discussed below. We consider the angles ϕ and ψ as the
only two soft degrees of freedom in each amino acid of the
protein, and therefore the total number of soft degrees of
freedom of the protein ls = 2a.

Partition function in equation (3) can be further sim-
plified if one assumes (i) that each amino acid in the pro-
tein can exist only in two conformations: the native state
conformation and the random coil conformation; (ii) the
potential energy surfaces for all the amino acids are identi-
cal. This assumption is applicable for both the native and
the random coil state. It is not very accurate for the de-
scription of thermodynamical properties of single amino
acids, but is reasonable for the treatment of thermody-
namical properties of the entire protein. The judgment
of the quality of this assumption could be made on the
basis of comparison of the results obtained with its use
with experimental data. Such comparison is performed in
Section 3 of this work.

Amino acids in a protein being in its native state vi-
brate in a steep harmonic potential. Here we assume that
the potential energy profile of an amino acid in the native
conformation should not be very sensitive to the type of
amino acid and thus can be taken as, e.g., the potential
energy surface for an alanine amino acid in the α-helix
conformation [11]. Using the same arguments the poten-
tial energy profile for an amino acid in unfolded protein
state can be approximated by e.g. the potential of alanine
in the unfolded state of alanine polypeptide (see Ref. [11]
for discussion and analysis of alanine’s potential energy
surfaces). Indeed, for an unfolded state of a protein it is
reasonable to expect that once neglecting the long-range
interactions all the differences in the potential energy sur-
faces of various amino acids arise from the steric overlap
of the amino acids’s side chains. This is clearly seen on
alanine’s potential energy surface at values of ϕ > 0◦ pre-
sented in reference [11]. But the part of the potential en-
ergy surface at ϕ > 0◦ gives a minor contribution to the
entropy of amino acid at room temperature. This fact al-
lows one to neglect all the differences in potential energy
surfaces for different amino acids in an unfolded protein,
at least in the zero order approximation. This assumption
should be especially justified for proteins with the rigid
helix-rich native structure. The staphylococcal nuclease,
which we study here has definitely high α-helix content.
Another argument which allows to justify our assumption
for a wider family of proteins is the rigidity of the pro-
tein’s native structure. Below, we validate the assump-
tions made by performing the comparison of the results of
our theoretical model with the experimental data for α/β
rich protein metmyoglobin obtained in reference [47].

For the description of the folding ↔ unfolding transi-
tion in small globular proteins obeying simple two-state-
like folding kinetics we assume that the protein can exist in
one of three states: completely folded state, completely un-
folded state and partially folded state where some amino

acids from the flexible regions with no prominent sec-
ondary structure are in the unfolded state, while other
amino acids are in the folded conformation. With this as-
sumption the partition function of the protein reads as:

Zp = Z0 +
a∑

i=a−κ

κ!
(i− (a− κ))!(a − i)!

Zi, (4)

where Zi is defined in equation (1), Z0 is the partition
function of the protein in completely unfolded state, a is
the total number of amino acids in a protein and κ is the
number of amino acids in flexible regions. The factorial
term in equation (4) accounts for the states in which vari-
ous amino acids from flexible regions independently attain
the native conformation. The summation in equation (4)
is performed over all partially folded states of the protein,
where a−κ is the minimal possible number of amino acids
being in the folded state. The factorial term describes the
number of ways to select i− (a− κ) amino acids from the
flexible region of the protein consisting of κ amino acids
attaining native-like conformation.

Finally, the partition function of the protein in vacuo
has the following form:

Zp = Z̃pA(kT )3N−3−a, (5)

where

Z̃p = Zau +
a∑

i=a−κ

κ!ZibZ
a−i
u exp (iE0/kT )

(i− (a− κ))!(a− i)!
(6)

Zb =
∫ π

−π

∫ π

−π
exp

(
− εb(ϕ, ψ)

kT

)
dϕdψ (7)

Zu =
∫ π

−π

∫ π

−π
exp

(
− εu(ϕ, ψ)

kT

)
dϕdψ. (8)

Here we omitted the trivial factor describing the motion
of the protein center of mass, which is of no significance
for the problem considered, εb(ϕ, ψ) (b stands for bound)
is the potential energy surface of an amino acid in the
native conformation and εu(ϕ, ψ) (u stands for unbound)
is the potential energy surface of an amino acid in the
random coil conformation. The potential energy profile of
an amino acid is calculated as a function of its twisting
degrees of freedom ϕ and ψ. Let us denote by ε0b and ε0u
the global minima on the potential energy surfaces of an
amino acid in folded and in unfolded conformations, re-
spectively. The potential energy of an amino acid then
reads as ε0u,b + εu,b(ϕ, ψ). E0 in equation (6) is defined as
the energy difference between the global energy minima of
the amino acid potential energy surfaces corresponding to
the folded and unfolded conformations, i.e. E0 = ε0u − ε0b .
The potential energy surfaces for amino acids as functions
of angles ϕ and ψ were calculated and thoroughly analyzed
in reference [11].

In nature proteins perform their function in the aque-
ous environment. Therefore the correct theoretical de-
scription of the folding ↔ unfolding transition in water
environment should account for solvent effects.
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2.2 Partition function of a protein
in water environment

In this section we evaluate E0 and construct the partition
function for the protein in water environment.

The partition function of the infinitely diluted solution
of proteins Z can be constructed as follows:

Z =
ξ∑
j=1

Z̃(j)
p Z

(j)
W , (9)

where Z(j)
W is the partition function of all water molecules

in the jth conformational state of a protein and Z̃(j)
p is the

partition function of the protein in its jth conformational
state, in which we further omit the factor describing the
contribution of stiff degrees of freedom in the system. This
is done in order to simplify the expressions, because stiff
degrees of freedom provide a constant contribution to the
heat capacity of the system since the heat capacity of the
ensemble of harmonic oscillators is constant. Below for the
simplicity of notations we put Z̃p ≡ Zp.

There are two types of water molecules in the system:
(i) molecules in pure water and (ii) molecules interacting
with the protein. We assume that only the water molecules
being in the vicinity of the protein’s surface are involved
in the folding ↔ unfolding transition, because they are
affected by the variation of the hydrophobic surface of
a protein. This surface is equal to the protein’s solvent
accessible surface area (SASA) of the hydrophobic amino
acids. The number of interacting molecules is proportional
to SASA and include only the molecules from the first pro-
tein’s solvation shell. This area depends on the conforma-
tion of the protein. The main contribution to the energy of
the system caused by the variation of the protein’s SASA
associated with the side-chains of amino acids because the
contribution to the free energy assosiated with solvation
of protein’s backbone is small [56]. Thus, in this work we
pay the main attention to the accounting for the SASA
change arising due to the solvation of side chains.

We treat all water molecules as statistically indepen-
dent, i.e. the energy spectra of the states of a given
molecule and its vibrational frequencies do not depend on
a particular state of all other water molecules. Thus, the
partition function of the whole system Z can be factorized
and reads as:

Z =
ξ∑
j=1

Z(j)
p ZYc(j)

s ZNt−Yc(j)
w , (10)

where ξ is the total number of states of a protein, Zs
is the partition function of a water molecule affected by
the interaction with the protein and Zw is the partition
function of a water molecule in pure water. Yc(j) is the
number of water molecules interacting with the protein
in the jth conformational state. Nt is the total number of
water molecules in the system. To simplify the expressions
we do not account for water molecules that do not interact
with the protein in any of its conformational states, i.e.
Nt = maxj{Yc(j)}.

To construct the partition function of water we follow
the formalism developed in reference [43]. In Appendix
we present the most essential details of the construction
of the partition function of water molecules and derive the
expressions for Zw and Zs, being the partition function of
water molecules in the pure water and in the vicinity of
the solute.

In our theoretical model we also account for the elec-
trostatic interaction of protein’s charged groups with wa-
ter. The presence of electrostatic field around the protein
leads to the reorientation of H2O molecules in the vicinity
of charged groups due to the interaction of dipole mo-
ments of the molecules with the electrostatic field. The
additional factor arising in the partition function of water
molecules (see Appendix for details) reads as:

ZE =
(

1
4π

∫
exp

(
−Ed cos θ

kT

)
sin θdθdϕ

)α
, (11)

where E is the strength of the electrostatic field, d is the
absolute value of the H2O molecule dipole moment, α is
the ratio of the number of water molecules that inter-
act with the electrostatic field of the protein (NE) to the
number of water molecules interacting with the surface of
the amino acids from the inner part of the protein while
they are exposed to water when the protein is being un-
folded (Nw), i.e. α = NE/Nw. Note that the effects of
electrostatic interaction turn out to be more pronounced
in the folded state of the protein. This happens because in
the unfolded state of a protein opposite charges of amino
acid’s side chains are in average closer in space due to the
flexibility of the backbone chain, while in the folded state
the positions of the charges are fixed by the rigid structure
of a protein.

Integrating equation (11) allows to write the factor ZE
for the partition function of a single H2O molecule in pure
water in the form:

ZE =

(
kT sinh

[
Ed
kT

]
Ed

)α
. (12)

This equation shows how the electrostatic field enters the
partition function. In general, E depends on the position
in space with respect to the protein. However, here we ne-
glect this dependence and instead we treat the parameter
E as an average, characteristic electrostatic field created
by the protein.

Let us denote by Ns the number of water molecules
interacting with the proteins surface in its folded state i.e.
Nt = Ns + Nw; where Nt is defined in equation (10).
We assume that the number of water molecules inter-
acting with the protein (Yc) is linearly dependent on
the number of amino acids being in the unfolded con-
formation, i.e. Yc = Ns + iNw/a, where i is the num-
ber of the amino acids in the unfolded conformation and
a is the total number of amino acids in the protein.
Thus, the partition function (10) with the accounting for
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the factor (12) reads as:

Z = ZNs
s

ξ∑
j=1

(
ZbZ

Nw
a

w Z
Nw

a

E exp (iE0/kT )
)i(j)

×
(
ZuZ

Nw
a

s

)a−i(j)
, (13)

where i(j) denotes the number of the amino acids being
in the folded conformation when the protein is in the jth
conformational state. Accounting for the statistical factors
for amino acids being in the folded and unfolded states,
similarly to how it was done for the vacuum case (see
Eq. (6)), one derives from equation (13) the following final
expression:

Z = (Zs)
Ns

[
ZauZ

Nw
s +

a∑
i=a−κ

κ! exp (iE0/kT )
(i− (a− κ))!(a− i)!

×
(
ZbZ

Nw/a
w Z

Nw/a
E

)i
(ZuZNw/a

s )a−i
]
, (14)

where the term in the square brackets accounts for all sta-
tistically significant conformational states of the protein.

Having constructed the partition function of the sys-
tem we can evaluate with its use all thermodynamic char-
acteristics of the system. In this work we analyze the
dependence of protein’s heat capacity on temperature
and compare the predictions of our model with available
experimental data.

3 Results and discussion

In this section we calculate the dependencies of the heat
capacity on temperature for two globular proteins met-
myoglobin and staphylococcal nuclease and compare the
results with experimental data from [46,47].

The structures of metmyoglobin and staphylococcal
nuclease proteins are shown in Figure A.1. These are rel-
atively small globular proteins consisting of ∼150 amino
acids. Under certain experimental conditions (salt concen-
tration and pH) the metmyoglobin and the staphylococcal
nuclease experience two folding ↔ unfolding transitions,
which induce two peaks in the dependency of heat capac-
ity on temperature (see further discussion). The peaks at
lower temperature are due to the cold denaturation of the
proteins. The peaks at higher temperatures arise due to
the ordinary folding ↔ unfolding transition. The availabil-
ity of experimental data for the heat capacity profiles of
the mentioned proteins, the presence of the cold denat-
uration and simple two-stage-like folding kinetics are the
reasons for selecting these particular proteins as case stud-
ies for the verification of the developed theoretical model.

3.1 Heat capacity of staphylococcal nuclease

Staphylococcal or micrococcal nuclease (S7 Nuclease) is a
relatively nonspecific enzyme that digests single-stranded

and double-stranded nucleic acids, but is more active on
single-stranded substrates [57]. This protein consists of
149 amino acids. Its structure is shown in Figure A.1.

To calculate the SASA of staphylococcal nuclease in
the folded state the 3D structure of the protein was taken
from the Protein Data Bank (PDB ID 1EYD). Using
CHARMM27 [50] forcefield and NAMD program [58] we
performed the structural optimization of the protein and
calculated SASA with the solvent probe radius 1.4 Å.

The value of SASA of the side-chains in the folded pro-
tein conformation is equal to Sf = 6858 Å2. In order to
calculate SASA for an unfolded protein state, the value of
all angles ϕ and ψ were put equal to 180◦, corresponding
to a fully stretched conformation. Then, the optimization
of the structure with the fixed angles ϕ and ψ was per-
formed. The optimized geometry of the stretched molecule
has a minor dependence on the value of dielectric suscep-
tibility of the solvent, therefore the value of dielectric sus-
ceptibility was chosen to be equal to 20, in order to mimic
the screening of charges by the solvent. SASA of the side-
chains in the stretched conformation of the protein is equal
to Su = 15 813 Å2.

The change of the number of water molecules those
interacting with the protein due to the unfolding process
can be calculated as follows:

Nw = (Su − Sf )n2/3, (15)

where Su = 15 813 Å2 and Sf = 6858 Å2 are the SASA of
the protein in unfolded and in folded conformations, re-
spectively and n is the density of the water molecules. The
volume of one mole of water is equal to 18 cm3, therefore
n ≈ 30 Å−3

To account for the effects caused by the electrostatic
interaction of water molecules with the charged groups of
the protein it is necessary to evaluate the strength of the
average electrostatic field E in equation (12). The strength
of the average field can be estimated as Ed = kT , where d
is the dipole moment of a water molecule, k is Bolzmann
constant and T = 300 K is the room temperature. Ac-
cording to this estimate the energy of characteristic elec-
trostatic interaction of water molecules is equal to the
thermal energy per degree of freedom of a molecule. In
Appendix we present the calculation of the number of wa-
ter molecules interacting with a single charged group of a
protein.

At physiological conditions staphylococcal nuclease
has 8 charged residues [59]. The value of α for this pro-
tein varies within the interval from 1.29 to 31.27 for
λd ∈ [10 . . . 30] Å, where λd is the Debye screening length
of the charge in electrolyte. In our numerical analysis in
equation (14) we have used the characteristic value of α
equal to 2.5.

Note that number of molecules interacting with the
electrostatic field NE and the strength of the electrostatic
field E should be considered as the effective parameters
of our model. In this work we do not perform accurate
accounting for the spatial dependence of the electrostatic
field. Instead, we introduce the parameters α and E that
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Table 1. Values of E0 for staphylococcal nuclease (E
(S)
0 ) and metmyoglobin (E

(M)
0 ) at different values of solvent pH.

pH value E
(S)
0 (kcal/mol) E

(M)
0 (kcal/mol)

7.0 0.789
5.0 0.795
4.5 0.803
4.10 1.128
3.88 0.819
3.84 1.150
3.70 1.165
3.5 1.2
3.23 0.890

can be interpreted as effective values of the number of
H2O molecules and the strength of the electrostatic field
correspondingly. Let us stress that the number of water
molecules α and the strength of the field E are not inde-
pendent parameters of our model because by choosing the
higher value of E and smaller value of α or vice versa one
can derive the same heat capacity profile.

In this work we do not investigate the dependencies of
the heat capacity profiles on the values of the parameters
α and E. Below we focus on the investigation of the de-
pendence of the protein heat capacity on the energy E0 at
the fixed value of α and E equal to 2.5 and 0.58 kcal/mol,
respectively.

An important parameter of the model is the energy
difference between the two states of the protein normal-
ized per one amino acid, E0 introduced in equation (6).
This parameter describes both the energy loss due to the
separation of the hydrophobic groups of the protein which
attract in the native state of the protein due to Van-der-
Waals interaction and the energy gain due to the forma-
tion of Van-der-Waals interactions of hydrophobic groups
of the protein with H2O molecules in the protein’s un-
folded state. Also, the difference of the electrostatic en-
ergy of the system in the folded and unfolded states is
accounted for in E0. The difference of the electrostatic
energy may depend on various characteristics of the sys-
tem, such as concentration of ions in the solvent and its
pH, on the exact location of the charged sites in the na-
tive conformation of the protein and on the probability
distribution of distances between charged amino acids in
the unfolded state. Thus, exact calculation of E0 is rather
difficult. It is a separate task which we do not intend to
address in this work. Instead, in the current study the en-
ergy difference between the two phases of the protein is
considered as a parameter of the model. We treat E0 as
being dependent on external properties of the system, in
particular on the pH value of the solution. In this work
the value of E0 is fitted to reproduce the experimental
measurements at different pH values.

Another characteristic of the protein folding ↔ un-
folding transition is its cooperativity. In the model it is
described by the parameter κ in equation (4). κ describes
the number of amino acids in the flexible regions of the
protein. The staphylococcal nuclease possesses a promi-
nent two-stage folding kinetics, therefore only 5−10% of
amino acids is in the protein’s flexible regions. Thus, the

value of κ for this protein is small. It can be estimated as
being equal to 149 × 7% ≈ 10 amino acids.

The values of E0 for staphylococcal nuclease at
different values of pH are given in Table 1.

For the analysis of the variation of the thermodynamic
properties of the system during the folding process one can
omit all the contributions to the free energy of the system
that do not alter significantly in the temperature range be-
tween −50 ◦C and 150 ◦C. Therefore, from the expression
for the total free energy of the system F we can subtract
all slowly varying contributions F0 as follows:

δF = F − F0

= −(kT lnZ − kT lnZ0) = −kT ln
(
Z

Z0

)
. (16)

From equation (16) follows that the subtraction of F0

corresponds to the division of the total partition func-
tion Z by the partition function of the subsystem (Z0)
with slowly varying thermodynamical properties. There-
fore, in order to simplify the expressions, one can divide
the partition function in equation (14) by the partition
function of fully unfolded conformation of a protein (by
ZauZ

Nw
s ) and by the partition function of Ns free water

molecules (by ZNs
w ). Thus, equation (14) can be rewritten

as follows:

Z =
(
Zs
Zw

)Ns
(

1 +
a∑

i=a−κ

κ! exp (iE0/kT )
(i− (a− κ))!(a− i)!

×
(
Zb
Zu

)i (
ZwZE
Zs

)iNw/a
)
. (17)

Equation (17) is the final equation that is used for calcula-
tion of the partition function of the protein. In Appendix
we present the exact expressions that we used for evalua-
tion of the dependencies of heat capacity on temperature.

The dependence of heat capacity on temperature cal-
culated for staphylococcal nuclease at different pH values
are presented in Figure 1 by solid lines. The results of
experimental measurements form reference [46] are pre-
sented by symbols. From Figure 1 it is seen that staphy-
lococcal nuclease experience two folding ↔ transitions in
the range of pH between 3.78 and 7.0. At the pH value 3.23
no peaks in the heat capacity is present. It means that the
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Fig. 1. Dependencies of the heat capacity on temperature
for staphylococcal nuclease at different values of pH. Solid
lines show results of the calculation, while symbols present
experimental data from reference [46].

protein exists in the unfolded state over the whole range
of experimentally accessible temperatures.

Comparison of the theoretical results with experimen-
tal data shows that our theoretical model reproduces ex-
perimental behaviour better for the solvents with higher
pH. The heat capacity peak arising at higher tempera-
tures due to the standard folding ↔ unfolding transition
is reproduced very well for pH values being in the re-
gion 4.5−7.0. The deviations at low temperatures can be
attributed to the inaccuracy of the statistical mechanics
model of water in the vicinity of the freezing point.

The accuracy of the statistical mechanics model for low
pH values around 3.88 is also quite reasonable. The devi-
ation of theoretical curves from experimental ones likely
arise due to the alteration of the solvent properties at high
concentration of protons or due to the change of partial
charge of amino acids at pH values being far from the
physiological conditions.

Despite some difference between the predictions of the
developed model and the experimental results arising at
certain temperatures and values of pH the overall perfor-
mance of the model can be considered as extremely good
for such a complex process as structural folding transition
of a large biological molecule.

3.2 Heat capacity of metmyoglobin

Metmyoglobin is an oxidized form of a protein myoglobin.
This is a monomeric protein containing a single five-
coordinate heme whose function is to reversibly form a
dioxygen adduct [60]. Metmyolobin consists of 153 amino
acids and its structure is shown in Figure A.1.

In order to calculate SASA of side chains of metmyo-
globin exactly the same procedure as for staphylococcal
nuclease was performed (see discussion in the previous
subsection). SASA in the folded and unfolded states of
the protein has been calculated and is equal 6847 Å2

and 16 926 Å2, respectively. Thus, there are 984 H2O
molecules interacting with protein’s hydrophobic surface
in its unfolded state.

Fig. 2. Dependencies of the heat capacity on temperature
for horse heart metmyoglobin at different values of pH. Solid
lines show the results of the calculation. Symbols present the
experimental data from reference [47].

The electrostatic interaction of water molecules with
metmyoglobin was accounted for in the same way as for
staphylococcal nuclease. The parameter α in equation (12)
was chosen to be the same as for staphylococcal nuclease,
i.e. equal to 2.5. With this we derive that 10 950 H2O
molecules involve in the interaction with the electrostatic
field of metmyoglobin in its folded state. The strength
of the field was chosen the same as for staphylococcal
nuclease.

The parameter κ for metmyoglobin in equation (4),
describing the cooperativity of the folding ↔ unfolding
transition, differs significantly from that for staphylococ-
cal nuclease. The transition in metmyoglobin is less co-
operative than the transition in staphylococcal nuclease
because metmyoglobin has intermediate partially folded
states [61]. Thus, while the rigid native-like core of the
protein is formed, a significant fraction of amino acids in
the flexible regions of the protein can exist in the un-
folded state. We assume that 1/3 of metmyoglobin’s amino
acids are in the flexible region, i.e. the parameter κ in
equation (4) equal to 50.

The values of E0 in equation (6) differ from that for
staphylococcal nuclease and are compiled in Table 1.

Solid lines in Figure 2 show the dependence of the
metmyoglobin’s heat capacity on temperature calculated
using the developed theoretical model. The experimental
data from reference [47] are shown by symbols.

Metmyoglobin experiences two folding ↔ unfolding
transitions at the pH values exceeding 3.5 which can be
called as cold and heat denaturations of the protein. The
dependence of the heat capacity on temperature therefore
has two characteristic peaks, as seen in Figure 2. Figure 2
shows that at pH lower than 3.84 metmyoglobin exists
only in the unfolded state.

The comparison of predictions of the developed theo-
retical model with the experimental data on heat capac-
ity shows that the theoretical model is well applicable for
metmyoglobin case as well. The good agreement of the the-
oretical and experimental heat capacity profiles over the
whole range of temperatures and pH values shows that the
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model treats correctly the thermodynamics of the protein
folding process.

Our theory includes a number of parameters, namely
the energy difference between two phases E0, strength
of the electrostatic field E, number of interacting H2O
molecules α, the parameter describing the cooperativity
of the phase transition κ, as well as other parameters
introduced in reference [43] to treat the partition function
of water. Three parameters, E, E0 and κ, are dependent
on the properties of a particular protein and on the pH
of the solvent. We have adjusted the values of these pa-
rameters in order to reproduce the experimental data. All
other parameters of the model describing the structure of
energy levels of water molecules, their vibrational and li-
brational frequencies, etc. are considered as fixed, being
universal for all proteins.

In spite of the model features of our approach, we want
to stress that the complex behavior and the peculiarities in
dependencies of the heat capacity on temperature are all
well reproduced by the developed model with only a few
parameters. This was demonstrated for two proteins and
we consider this result as a significant achievement. This
fact supports our conclusion that the developed model can
be used for the prediction of new features of phase tran-
sitions in various biomolecular systems. Indeed, from Fig-
ures 1 and 2 one can extract a lot of useful information
on the heat capacity profiles: the concave bending of the
heat capacity profile for a completely unfolded protein,
the temperature of the cold and heat denaturation, the
absolute values of the heat capacity at the phase transi-
tion temperature, the broadening of heat capacity peaks.
Another peculiarity which is well reproduced by our statis-
tical mechanics model is the decrease of the heat capacity
of the folded state of the protein in comparison with that
for unfolded state and asymmetry of the heat capacity
peaks.

4 Conclusions

We have developed a novel statistical mechanics model for
the description of folding ↔ unfolding processes in globu-
lar proteins obeying simple two-stage-like folding kinetics.
The model is based on the construction of the partition
function of the system as a sum over all statistically sig-
nificant conformational states of a protein. The partition
function of each state is a product of partition function of a
protein in a given conformational state, partition function
of water molecules in pure water and a partition function
of water molecules interacting with the protein. The prin-
ciples of the construction of the partition function of the
system are thoroughly discussed and justified.

The introduced model relies on a number of physi-
cal parameters being responsible for certain characteristics
and properties of the system. Most of the parameters have
been determined from the available experimental data and
only three of them (energy difference between two phases,
cooperativity of the transition and the average strength
of the protein’s electrostatic field) are considered as being

variable. Their choice of the variable parameters depend
on a particular type of the protein and pH of the solvent.

The most prominent feature of the approach reported
in the present paper distinguishing it from the earlier
works is that it is developed for the real protein systems
contrary to the various generalized and toy-models dealing
with the analysis of the generalized features of the ideal
protein-like systems and their folding characteristics.

We have compared the predictions of the developed
model with the results of experimental measurements of
the dependence of the heat capacity on temperature for
staphylococcal nuclease and metmyoglobin. The experi-
mental results were obtained at various pH of solvent. The
suggested model is capable of reproducing well within a
single framework a large number of features of the complex
heat capacity profiles, such as the phenomena of cold and
heat denaturations, reproduce correctly the correspond-
ing maximum values of the heat capacities, the tempera-
ture ranges of the cold and heat denaturation transitions,
the differences between the heat capacities of the protein
folded and unfolded states.

The very reasonable agreement of the theoretical
results with the results of experimental measurements
demonstrates that the developed formalism can be used
for the analysis of thermodynamical properties of many
more biomolecular systems. With some advance and mod-
ification the model can be applied for the investigation of
the influence of mutations on the protein stability, analysis
of assembly and stability of protein complexes.

The developed theoretical model can be also used for
the description of protein unfolding profiles as a result of
temperature increase near the swift ion trajectories. Ef-
fects of medium ionisation resulting from ions propaga-
tion in the medium can be also included in the model via
variation of pH of the solvent. However, accurate descrip-
tion should account also for the dynamical effects associ-
ated with spatial and temporal variation of temperature
and ions/electrons concentrations near swift ion’s trajec-
tory. Such extensions of the model could be carried out in
further works.

We acknowledge support of this work by the NoE EXCELL.
A.Y. acknowledges Stiftung Polytechnische Gesellschaft for fi-
nancial support.

Appendix

In the Appendix the details of the statistical mechanics
formalism used for the construction of the partition func-
tion of proteins in water environment are presented. First,
the influence of the long-range interactions on the ther-
modynamic characteristics of the unfolded polypeptide is
discussed. Second, it is constructed the partition function
of water molecules in pure water and in the vicinity of the
hydrophobic solute. Third, it is presented an estimate of
the number of water molecules interacting with charged
groups of a protein at the finite concentration of ions.
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Table A.1. Parameters of the partition function of water according to reference [43].

Number of hydrogen bonds 0 1 2 3 4
Energy level, Ei (kcal/mol) 6.670 4.970 3.870 2.030 0
Energy level, Es

i (kcal/mol) 6.431 4.731 3.631 1.791 −0.564

Translational frequencies, ν
(T )
i , cm−1 26 86 61 57 210

Librational frequencies, ν
(L)
i , cm−1 197 374 500 750 750

Fig. A.1. (a) Structure of staphylococcal nuclease (PDB
ID 1EYD [62]), and (b) horse heart metmyoglobin (PDB
ID 1YMB [63]). Images have been rendered using VMD
program [64].

A.1 The influence of the long-range steric
interaction on the entropy of the polypeptide
chain in unfolded state

In this work we assume that in the unfolded protein
states interaction between the distant backbone amino
acids can be neglected. In order to support this as-
sumption let us estimate the correction of the partition
function for an unfolded protein state arising from from
a steric overlap of distant segments of the polypeptide
chain. The characteristic entropy change associated with
unfolding of one amino acid ΔS can be estimated as
∼10 cal mol−1 K−1 [65], the persistence length of a protein
in unfolded state lp is ∼0.7 nm [66] and the length of one
amino acid residue along the polypeptide chain (contour
length) lc is 0.35 nm. The latter value can be obtained for
the geometry of the fully stretched conformation of met-
myoglobin protein (PDB ID 1YMB). In three dimensions
the number of final states after n-step random walk (RW)
is equal to 6n, while the number of final states after the
n-step self-avoiding walk (SA) is 4.7n [67]. The entropy
of one segment of a polymer with the length equal to the
persistence length can be estimated as follows:

S(μ) = −k
n

μn∑
i=1

1
μn

ln
1
μn
, (A.1)

S(μ) ≈ k lnμ, (A.2)

where k is the Boltzmann constant and μ equals 4.7 and
6 for the case of SA and RW, respectively. The relative
difference in the entropy of a single amino acid calculated
for RW and SA can be estimated as follows:

δ =
|SRW − SSA|

ΔS

lc
lp
, (A.3)

where SSA and SRW are equal to S(4.7) and S(6) from
equation (A.2), respectively. Substituting the values for

SSA and SRW to equation (A.3) one obtains that δ ≈ 3%.
This means that the accounting for SA is beyond the ac-
curacy of our model, because even greater uncertainties
arises from the determination ofΔS, see reference [65] and
references therein. Note, that the diameter of the polypep-
tide chain in this estimate was is equal to the persistence
length of a protein. The performed estimate illustrates
that the thermodynamical characteristics of a polypep-
tide chain are not very sensitive to the steric overlap of
distant amino acids. However, the correct description of
the dynamical and spatial structure of a protein in un-
folded state can only be achieved with accounting for the
long-range interactions.

A.2 The partition function of water

Following the formalism developed in reference [43] the
partition function of a water molecule in pure water
reads as:

Zw =
4∑
l=0

[ξlfl exp(−El/kT )] , (A.4)

where the summation is performed over 5 possible states
of a water molecule (the states in which water molecule
has 4, 3, 2, 1 or 0 hydrogen bonds with the neighboring
molecules). El are the energies of these states and ξl are
the combinatorial factors being equal to 1, 4, 6, 4, 1 for
l = 0, 1, 2, 3, 4, respectively. They describe the number of
choices to form a given number of hydrogen bonds. fl in
equation (A.4) describes the contribution due to the parti-
tion function arising to the translation and libration oscil-
lations of the molecule. In the harmonic approximation fl
are equal to:

fl =
[
1 − exp(−hν(T )

l /kT )
]−3 [

1 − exp(−hν(L)
l /kT )

]−3

,

(A.5)

where ν(T )
l and ν(L)

l are translation and libration motions
frequencies of a water molecule in its lth state, respec-
tively. These frequencies are calculated in reference [43]
and are given in Table A.1. The contribution of the in-
ternal vibrations of water molecules is not included in
equation (A.4) because the frequencies of these vibrations
are practically not influenced by the interactions with
surrounding water molecules.

The partition function of a water molecule from the
protein’s first solvation shell reads as:

Zs =
4∑
l=0

[ξlfl exp(−Esl /kT )] , (A.6)
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where fl are defined in equation (A.5) and Esl denotes
the energy levels of a water molecule interacting with
aliphatic hydrocarbons of protein’s amino acids. Values
of energies Esl are given in Table A.1. For simplicity we
treat all side-chain radicals of a protein as aliphatic hydro-
carbons because most of the protein’s hydrophobic amino
acids consist of aliphatic-like hydrocarbons.

It is possible to account for various types of side chain
radicals by using the experimental results of the measure-
ments of the solvation free energies of amino acid rad-
icals from reference [23] and associated works. However,
this correction will imply the reparametrization of the the-
ory presented in [43] and will lead to the introduction of
∼20 × 5 additional parameters. Here we do not perform
such a task since this kind of improvement of the theory
would smear out the understanding of the principal phys-
ical factors underlying the protein folding ↔ unfolding
transition.

A.3 The number of water molecules interacting
with a point charge in electrolyte

The total number of water molecules NE that interact
with the electrostatic field of the protein can be estimated
from the known Debye screening length of a charge in
electrolyte λd as follows:

NE = Nq
4πρ
3
λ3
d, (A.7)

whereNq is the number of charged groups in the protein, ρ
is the density of water and λ is the Debye screening length.
Debye screening length of the symmetric electrolyte can
be calculated as follows [68]:

λd =
√

εε0kT

2NAe2I
, (A.8)

where ε0 is the permittivity of free space, ε is the dielectric
constant, NA is the Avogadro number, e is the elementary
charge and I is the ionic strength of the electrolyte.

The experiments on denaturation of staphylococcal
nuclease and metmyoglobin were performed in 100 mM
ion buffer of sodium chloride and 10 mM buffer of sodium
acetate, respectively [46,47]. The Debye screening length
in water with 10 mM and 100 mM concentration of ions
is λd = 30 Å and λd = 10 Å at room temperature,
respectively.

The described method allows to estimate the number
of water molecules (NE) interacting with electric filed cre-
ated by the charged groups of a protein. It should be con-
sidered as qualitative estimate since we have assumed the
average electric field as being constant within a sphere
of the radius λd, but in fact it experiences some varia-
tions. Thus, at the distances ∼15 Å from the point charge
the interaction energy of a H2O molecule with the elec-
tric field becomes equal to ∼0.02 kT (for this estimate we
have used the linear growing distance-dependent dielectric
susceptibility ε = 6R as derived in Ref. [69] for the atoms
fully exposed to the solvent). However, we expect that the

more accurate analysis accounting for the spatial variation
of the electric field will not change significantly the results
of the analysis reported here, because it is based on the
physically correct picture of the effect and the realistic
values of all the physical quantities.

A.4 Calculation of the heat capacity

Having constructed the partition function of the system
we can evaluate with its use all thermodynamic character-
istics of the system, such as e.g. entropy, free energy, heat
capacity, etc. The free energy (F ) and heat the capac-
ity (c) of the system can be calculated from the partition
function as follows:

F (T ) = −kT lnZ(T ), (A.9)

c(T ) = −T ∂
2F (T )
∂T 2

. (A.10)

In this work we analyze the dependence of protein’s heat
capacity on temperature and compare the predictions of
our model with available experimental data.

With the use of equation (A.10) on can calculate the
heat capacity of the system as follows:

c(T ) = A+B(T − T0) − T
∂2F (T )
∂T 2

, (A.11)

where the factors A and B are responsible for the abso-
lute value and the inclination of the heat capacity curve,
respectively. These factors account for the contribution of
stiff harmonic vibrational modes in the system (factor A)
and for the unharmonic correction to these vibrations (fac-
tors B and T0). The contribution of protein’s stiff vibra-
tional modes and the heat capacity of the fully unfolded
conformation of protein is also included into these factors.
In our numerical analysis we have adjusted the values ofA,
B and T0 in order to match experimental measurements.
However, factors A, B and T0 should not be considered
as parameters of our model since their values are not re-
lated to the thermodynamic characteristics of the fold-
ing ↔ unfolding transition and depend not entirely on
the properties of the protein but also on the properties of
the solution, protein and ion concentrations, etc.

In our calculations for the protein staphylococcal nu-
clease we have used the values of A = 1.25 J K−1 g−1, B =
6.25×10−3 J K−2 g−1 and T0 = 323 K in equation (A.11).

In our calculations for metmyoglobin we have used the
values of A = 1.6 J K−1 g−1, B = 8.25× 10−3 J K−2 g−1

and T0 = 323 K in equation (A.11).
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