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Abstract. We study the dispersion interaction of the van der Waals and Casimir–Polder (vdW-CP) type
between a neutral atom and the surface of a conductor by allowing for nonlocal electrodynamics, i.e.
electron diffusion. We consider two models: (i) bulk diffusion, and (ii) diffusion in a surface charge layer. In
both cases, we find that the transition to a semiconductor as a function of the conductivity is continuous,
unlike the case of a local model. The relevant parameter is the electric screening length and depends on the
carrier diffusion constant. We find that for distances comparable to the screening length, vdW-CP data
can distinguish between bulk and surface diffusion, hence it can be a sensitive probe for surface states.

1 Introduction

Recent progress in the understanding of the van der
Waals–Casimir–Polder (vdW-CP) force between an atom
and a surface allows by now to distinguish surface prop-
erties with respect to charge transport. Data on the tem-
perature and atom-surface distance dependence provide
excellent tools for such analysis. In particular the exper-
iments on fused silica [1,2] have demonstrated a temper-
ature dependence of the vdW-CP interaction. Fused sil-
ica is considered as a dilutely doped semiconductor that
has a finite conductivity σ. The data was fitted success-
fully to the potential for a dielectric surface which differs
from the one for a perfectly reflecting mirror, as consid-
ered by Casimir and Polder [3]. In fact, since σ/ω diverges
at zero frequency, any nonzero conductivity will repro-
duce the perfect reflector result [4]. It has been suggested
to resolve this puzzle with the help of a nonlocal model
of the electromagnetic response, where charge diffusion
and screening become essential at low conductances [5],
although the approach was met with criticism [6,7]. In
a related experiment on the (macroscopic) Casimir force
between a gold-coated sphere and a single-crystal sili-
con membrane [8], the results are consistent with a di-
electric behavior in its pristine form (ignoring the σ/ω
tail). The significant change in the charge carrier den-
sity after laser illumination leads to a metallic response
in local form, again in agreement with Casimir force mea-
surements. Nonlocal theories have been worked out to un-
derstand the crossover between these limits [5,9–11], al-
though experimental data favor a local description where
the contribution of free charge carriers is omitted in the
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dielectric state [6–8]. For the discussion whether nonlocal
electrodynamics may be applied to macroscopic Casimir
interactions, and its consistency with thermodynamics,
see references [6,7,12–15,17].

The ability of probing charge transport may provide
for an increased understanding of surface science by us-
ing the vdW-CP interaction as a probe. This viewpoint
may be traced back to the seminal paper by Zaremba and
Kohn [18] where the van der Waals potential (neglecting
retardation) was calculated with a microscopic description
of the many-electron response of a metal. Their analysis
yields an expression for the reference plane with respect
to which the atom-surface distance z is actually calcu-
lated. See reference [19] for a review of related methods.
Dorofeyev [20] analyzed the van der Waals (non-retarded)
regime with the help of a nonlocal (k-dependent) electro-
magnetic response based on the surface impedance work
by Kliewer and Fuchs [21]; the electrons were assumed to
reflect specularly from the inner surface.

In the present work, we compare two non-local mod-
els that can be understood as mesoscopic extensions of
the work by Zaremba and Kohn [18]: (i) the first one al-
lows for bulk diffusion as in references [5,9], we denote it
“continuous charge” (CC). In the non-retarded limit, this
reduces to the Kliewer and Fuchs approach [21] for a hy-
drodynamic dielectric function in the bulk. The model (ii)
allows for diffusion only within a surface layer (“charge
layer” or CL), the bulk charges responding with a local
conductivity. Such composite surfaces with charges in the
bulk and on the surface, are fairly common in metallic sys-
tems. These surfaces are either covered with adsorbates or
nanostructures and can, e.g., be used as sensitive chem-
ical sensors and biosensors [22], or are disordered with
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quantum well states at the surface [23]. Further motiva-
tion for a two-type charge model comes from studies of the
anomalous heating of cold ions observed in miniaturized
Paul traps that invoke surface charge fluctuations on the
metallic electrodes [24–28]. Composite surfaces have also
been explored regarding surface plasmons and lead to a
wide range of dispersion relations, as observed in different
systems, see reference [29] and references therein.

The hallmark of the non-local theory is charge diffu-
sion. In the CC model, it is described by the diffusion coef-
ficient D in the bulk, while Ds describes surface diffusion
in the CL. We identify a screening length a0 (cgs units)

a0 =

√
ε∞D

4πσ
, a0 =

√
ε∞Ds

4πσ
, (1)

where σ, ε∞ are the bulk conductivity and background
dielectric constant, respectively. As the atom-surface dis-
tance z becomes comparable to the length scale a0, the
vdW-CP interaction changes its behaviour. We consider
different materials where a0 can be compared with the
other two important length scales of the vdW-CP poten-
tial: the radiation wavelength λA = c/Ω, Ω being the
atomic transition frequency, and the thermal photon wave-
length λT = �c/kBT at temperature T . As common for
electric dipole transitions in the visible range, we assume
here λA � λT , but explore otherwise the full range of
distances. After defining the charge models (Sect. 2), we
study in Section 3 the case that a0 is in the van der Waals
(short distance) regime, a0 � λA, focusing on the T = 0
case. In Section 4, the length a0 is in the Casimir-Polder
(intermediate) regime, λA � a0 � λT , while in Section 5
we consider long distances a0 � λT where screening af-
fects the Lifshitz (thermal) regime of the interaction. In
all these cases we find that the crossover from the vdW-
CP potential for a local conductor to a dielectric occurs
at z ≈ a0. In addition, the dispersion interaction is a good
surface probe in the sense that the crossover is different
in the CC and CL systems. This difference is particularly
visible when the two limits, metallic and dielectric, are
well separated. The relevant parameters are discussed in
the conclusion.

2 Model

2.1 Atom–surface interaction potentials

We use in this paper the general formulation of Wylie and
Sipe [30,31] for the Casimir-Polder potential of an atom
with a surface. Assuming the surface and the electromag-
netic field in equilibrium at temperature T , the free energy
of interaction is given by

F(r) = −kBT

∞∑
l=0

′ ∑
ij

αij(iξl)Gji(r, r; iξl), (2)

which is a sum over Matsubara frequencies ξl ≡ 2πlkBT/�

along the imaginary frequency axis. The primed sum is

taking the l = 0 term with a factor 1
2 . The atomic polariz-

ability αij(ω) is given in equation (4) below, the retarded
Green tensor Gij(r, r; ω) is made explicit in equations (6)
and (7). In the limit T → 0, F reduces to the interaction
energy

U(r) = − �

2π

∫ ∞

0

dξ
∑
ij

αij(iξ)Gji(r, r; iξ). (3)

This formulation applies for an atom in the ground state,
for which the polarizability tensor is given by

αij(ω) = lim
η→0+

2
�

∑
e

Ωegd
ge
i deg

j

Ω2
eg − (ω + iη)2

, (4)

where Ωeg is the transition frequency between the ground
state (g) and an excited state (e) with an electric dipole
matrix elements g ↔ e and dge

i = 〈g|di|e〉. We focus on a
single resonance and assume rotational symmetry, so that
Ωeg = Ω and the polarizability is isotropic, αij = α δij .

The electromagnetic Green tensor Gij(r, r′; ω) in equa-
tion (2) provides the electric field Ei(r) radiated by a test
dipole located at r′ and oscillating with amplitude dj at
frequency ω:

Ei(r) =
∑

jGij(r, r′; ω)dj . (5)

For a source outside a polarizable body, this electric
field can be calculated within macroscopic electrodynam-
ics (see, e.g., Refs. [30,31]) and involves the reflection (or
scattering) amplitudes of the body. It turns out that these
amplitudes are sufficient to determine the Casimir-Polder
interaction. The subtraction of the free-space part of the
Green tensor (Lamb shift) is understood in the follow-
ing. At a planar surface, only two principal polarizations
p = TM, TE are relevant, and the reflection amplitudes
depend on frequency and a wave vector k parallel to the
surface rp = rp(ω, k). As we put r = r′ in equations (2)
and (3), the planar symmetry implies that the Green ten-
sor is diagonal with elements [30,31] (cgs units)

Gxx(r, r; ω) =
∫ ∞

0

dk
ke−2v0z

2v0

[
v2
0rTM +

ω2

c2
rTE

]
(6)

Gzz(r, r; ω) =
∫ ∞

0

dk
k3e−2v0z

v0
rTM, (7)

the element Gyy being identical to Gxx. The vacuum decay
constant for a field mode with frequency ω and parallel
wave vector k is

v0 =
√

k2 − ω2/c2, (8)

with the root chosen such that Re v0 ≥ 0 and Im v0 ≤ 0.
The reflection amplitudes are collected in Table 1 for
the different surface models considered in this paper.
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The general equation (2), valid for any T , now takes the
form

F(z) = −kBT

2

∫ ∞

0

dk 2k2e−2kzα(0)rTM(0, k)

− kBT

∞∑
l=1

α(iξl)
∫ ∞

0

dk
k

v0
e−2v0z

[
2k2rTM(iξl, k)

+
ξ2
l

c2
(rTM(iξl, k) − rTE(iξl, k))

]
. (9)

Let us briefly recall the assumptions behind the Wylie
and Sipe approach [30,31]: the interaction energy is calcu-
lated in perturbation theory with respect to the atom-field
coupling, starting from a well-defined atomic level (here,
the ground state). The temperature provides Boltzmann
weights for the excited states of the electromagnetic field,
thus including the interaction with blackbody radiation
and its modification by the surface. The thermal popula-
tion of excited states of the atom is negligible provided the
Bohr frequency is large enough, �Ω � kBT . Otherwise, a
temperature-dependent polarizability should be used in
equations (2) and (9). Finally, the surface response is
worked out ignoring the presence of the atom and assum-
ing a linear response of the surface to electromagnetic ra-
diation, consistent with common practice in surface spec-
troscopy. By inspection of equation (9), one notes that
wave vectors up to k ∼ 1/z are relevant for the interaction
potential. At distances z much larger than the size of the
unit cell, a macroscopic treatment of the surface response
is therefore justified. There have been discussions what
kind of electromagnetic response may be used consistently
for atom-surface potentials and macroscopic Casimir in-
teractions in general, see references [6,7,12–15,17]. The ap-
proach of references [30,31] is based on the fluctuation-
dissipation theorem [32].

2.2 Surface response with charge diffusion

Surfaces covered with thin layers of strongly localized
charges or adsorbates have been studied in much detail in
surface physics. For a general theory of their electromag-
netic response, see references [33,34]. We consider here a
model introduced in reference [26] where the surface is
covered by a charge sheet with a charge density γ(x, y)
(localized in the plane z = 0). The details of the electro-
magnetic response are worked out in Appendix. The sheet
current in the layer responds by diffusion

J = −Ds(ω)∇‖γ, (10)

where Ds(ω) = Ds/(1 − iωτs) is the surface diffusion co-
efficient and τs a surface relaxation time. The gradient
appearing here is parallel to the layer. A surface conduc-
tivity term proportional to E is neglected, as justified for
a small layer thickness, see Appendix A.3. Charge conser-
vation yields

−iωγ + ∇ · J = jz(0−), (11)

so that the bulk current just below the layer, jz(0−), pro-
vides the influx into the surface layer. We take the bulk
current response in the usual Ohmic form

z < 0: j = σ(ω)E, (12)

where the Drude conductivity is σ(ω) = σ/(1− iωτ) with
a scattering time τ . Equations (10) and (12) define the CL
(charge layer) model.

The CC (continuous charge) model, in contrast, is de-
fined by the bulk charge density that has a diffusion con-
stant D, i.e. equation (12) is replaced by

j = σ(ω)E − D(ω)∇ρ. (13)

The “additional” boundary condition for the current is
then jz(0−) = 0, since there are no surface charges in this
nonlocal model.

The resulting reflection amplitudes are summarized in
Table 1 and more details on their derivation are given in
Appendix. One notes that the TE polarization is not af-
fected by the composite structure of the surface. This can
be understood from the fact that surface charges are cre-
ated by electric fields perpendicular to the surface, which
are absent in this polarization.

To illustrate the impact of the diffusive layer, we have
calculated the local photonic mode density, i.e., the imag-
inary part of Gii(r, r; ω). This quantity can be measured
from the spontaneous decay rate of an excited atom placed
at r or from the heating rate of an ion trapped near a
surface [24–28]. The results shown in Figure 1 illustrate
the enhancement of the mode density at low frequencies
(below the characteristic scale D(s)/z2, left column). At
large wave vectors (short distances, right column), there
is a competition between additional modes (enhancing the
mode density, CL model) and screening (reducing it, CC
model). Note that for the parameters considered here the
screening length a0 is much smaller than the diffusion
length ∼ √

D(s)/ω. An excited atom decays faster because
diffusion along the surface broadens the field spot it cre-
ates, increasing the effective area where absorption takes
place. Calculations of the Casimir (plate-plate) interac-
tion between materials with a nonlocal electromagnetic
response have revealed qualitatively similar trends (com-
pare Refs. [35,36] to Ref. [37]). The experimental data of
reference [8] are better described with a local rather than
nonlocal theory, however, see reference [15] and the dis-
cussion in references [16,17].

3 Van der Waals (nonretarded) regime

This regime corresponds to short distances where retar-
dation is negligible

z � λA ≡ c/Ω, (14)

with a typical value λA ≈ 100 nm for transitions in the
visible range. The Van der Waals interaction follows a
power law F(z) ∼ 1/z3 for a material with a local re-
sponse (Drude metal or dielectric). We consider in this
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Table 1. The reflection coefficients rTE(ω, k) and rTM(ω, k) for two models for a nonlocal surface response. Symbols used:
The dielectric function ε(ω) is defined at equation (18) while εs(ω, k) is defined at equation (17). Spatial decay rates are for

the vacuum v0(ω, k), equation (8), for transverse fields in the medium v(ω, k) =
√

k2 − ε(ω)ω2/c2 with Re v > 0 and for

compressional charge waves v1(ω, k) =
√

k2 − iωε(ω)/[ε∞D(ω)] with Re v1 > 0 and D(ω) = D/(1 − iωτ ).

Local Hydrodynamic bulk charge (CC) Charge layer (CL)

rTE(ω, k)
v0 − v

v0 + v

v0 − v

v0 + v

v0 − v

v0 + v

rTM(ω, k)
εv0 − v

εv0 + v

εv0 − v − (ε − ε∞) k2

ε∞v1

εv0 + v + (ε − ε∞) k2

ε∞v1

εsv0 − v

εsv0 + v
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Fig. 1. (Color online) (a, b) Local photonic mode density near a metallic surface, described as a local Ohmic conductor (solid
blue curves), by a continuous bulk charge (CC) model (dotted yellow curves, superimposed), and a diffusive charge layer (CL)
model (dashed purple curves). Thin green lines: free space mode density. We plot the imaginary part of the Green functions in
equations (6) and (7); top row: polarization parallel to surface (Gxx), bottom row: perpendicular polarization (Gzz). Parameters:
conductivity σ = 3.6 × 1017 rad/s, typical for Al, relaxation time τ = τs = 10−15 s, diffusion constant Ds = D = 5 × 103 cm2/s,
background permittivity ε∞ = 1, giving a screening length a0 ≈ 0.3 nm, and distance z = 10 μm. The plots include the
free space response that provides the dominant ∼ ω3 scaling at high frequencies. Characteristic diffusion frequency for these
parameters: ωD = D/z2 = 5 × 109 rad/s (left arrow); right arrow: inverse photon round trip time ωc = c/(2z). (c, d) Distance
dependence of the local mode density near a metallic surface, described by the same models as in the left column. Same
parameters, except that the frequency is fixed to ω = 1015 rad/s (near-infrared). The plots include the free space response,
that leads to a constant limit 2

3
ω3 at large distance (thin horizontal lines). The oscillations are due to partial standing waves

formed above the surface. Diffusion length for these parameters: �D =
√

2D/ω ≈ 31 nm (left arrow); right arrow: reduced
wavelength λ = c/ω.

section the situation that the screening length (see Intro-
duction) satisfies a0 � λA; this corresponds to electron
densities typical for metals.

We start from the zero-temperature expression for the
interaction potential, combining equations (3), (4), (6),
(7):

U(z) = − �

2π

∫ ∞

0

dξ α(iξ)
∫ ∞

0

dk
k

v0
e−2v0z

[
2k2rTM(iξ, k)

+ (ξ2/c2)(rTM(iξ, k) − rTE(iξ, k))
]

(15)

where now v2
0 = k2 + ξ2/c2. The dominant ranges of the

integrals are around k ∼ 1/z � Ω/c, due to the exponen-
tial, and ξ ≤ Ω, due to the polarizability α(iξ). This allows
to simplify equation (15) by taking ξ � ck and v0 ≈ k,
so that for the CL model (see Tab. 1)

U(z) ≈ −�α(0)
π

∫ ∞

0

dξ
Ω2

ξ2 + Ω2

×
∫ ∞

0

dk e−2kzk2 εs(iξ, k)k − v

εs(iξ, k)k + v
. (16)
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The reflection amplitude involves a “surface dielectric
function” given by (see Ref. [26] and Appendix)

εs(ω, k) = ε∞ +
4πiσ

(ω + iDs(ω)k2)(1 − iωτ)
, (17)

where Ds(ω) is the surface diffusion coefficient (see
Eq. (10)). The conventional Drude dielectric function (lo-
cal), with a bulk relaxation time τ and a high-frequency
asymptote ε∞, is

ε(ω) = ε∞ +
4πiσ

ω(1 − iωτ)
, (18)

which happens to be the limiting form of equation (17)
when Ds → 0. From the k-dependence in εs(ω, k), we iden-
tify the dimensionless factor k2ε∞Ds/(4πσ) = (ka0)2 that
defines the screening length a0 consistent with the defini-
tion (1) of the Introduction. For ka0 � 1, the reflection
amplitude in equation (16) recovers the local behaviour,
while at very short distances, ka0 � 1, the diffusive (non-
local) term dominates. The latter case implies that the
conductivity contribution is suppressed in equation (17),
leaving only the background dielectric constant ε∞.

If ε∞ > 1, both limiting cases (conductor and dielec-
tric) show a van der Waals interaction that follows the fa-
miliar c3/z3 power law, but with different c3 coefficients.
For the dielectric,

local diel., z � λA: U(z) ≈ −�α(0)Ω
8z3

ε∞ − 1
ε∞ + 1

, (19)

while the local Drude conductor gives [30,31]

local metal, z � λA: U(z) ≈ −�α(0)Ω
8z3

ωs

Ω + ωs
. (20)

Here, ω2
s = 2πσ/τ is the surface plasmon frequency, and

we have neglected Ohmic losses (i.e., ωs, Ω � 1/τ). The
composite surface models with their nonlocal response
give a van der Waals interaction that crosses over between
these two limits (see Fig. 3). This is similar to what has
been analyzed at large distances by Pitaevskii [5].

We focus here on the somewhat academic case of a
simple free-electron metal (ε∞ = 1), where the nonlocal
surface reponse changes even the exponent at short dis-
tances because the c3 coefficient in equation (19) vanishes.
To get insight into the small-distance behaviour, we ex-
pand the CL reflection coefficient rTM at high momentum
and get for τs = τ

k � ωs/c, ξ/c:
εs(iξ, k)k − v

εs(iξ, k)k + v
≈ 1

1 + 2(ka0)2
. (21)

Note that the imaginary frequency ξ drops out in this
case, and the suppression ∼ 1/k2 on scales shorter than
the screening length a0. The ξ integral in equation (16)
can then be performed, and one gets for z � a0 the simple
result

CL, z � a0: U(z) ≈ −�Ωα(0)
8za2

0

, (22)

instead of the 1/z3 power law. The potential then scales
only like ∼ 1/z because the image charge in or below the
surface is smeared over a scale a0 � z, as allowed by the
finite diffusion constant and by the metallic compressibil-
ity. Once ε∞ �= 1, a non-diffusing image charge at scale z
is present, restoring the 1/z3 behavior.

In Figure 2, we compare the exact evaluation of
the van der Waals potential (15) (dashed curve) to
the numerical integration over k of the approximate re-
flection amplitude (21) (solid gray curve). One gets a
good approximation over a wide range of non-retarded
distances 0.1 a0 < z � λA. Note how the non-local the-
ory matches with the local conductor (solid blue curve)
as a0 � z.

A similar analysis for the CC model (Tab. 1) yields
a screening length a0 =

√
ε∞D/(4πσ) involving the bulk

diffusion constant, and the approximate form

k ∼ 1/a0 � ξ/c: rTM(iξ, k) ≈
√

k2 + 1/a2
0 − k√

k2 + 1/a2
0 + k

. (23)

Despite the difference in the reflection amplitudes
(Eqs. (21) and (23)), the short-distance asymptote turns
out to be just a factor of one half smaller than equa-
tion (22) (upper solid gray curve in Fig. 2). These re-
sults illustrate the dramatic impact of nonlocal electrody-
namics on the van der Waals interaction. We expect them
to apply qualitatively in materials where the background
polarizability ε∞ > 1 provided by bound electrons is rel-
atively small. The c3 coefficient in equation (19) is then
nonzero, but weak and shifts the short-distance asymp-
totes of the CL and CC curves in Figure 2 below zero.

4 Casimir-Polder (retarded) regime

This regime corresponds to an intermediate range of
distances,

λA � z � λT , (24)

where the thermal wavelength λT = 7.6 μm at 300 K.
This range is characterized by the form F ∼ 1/z4 for
both dielectric and metallic surfaces with a local dielectric
response.

For analytic expansions, we consider T = 0 so that
the ξ-integral of equation (3) still applies. From the expo-
nent 2v0z, we read off the characteristic frequency ωc =
c/(2z) that limits the ξ-integration range to ξ <∼ωc. In
the CP regime (24), ωc is much smaller than the atomic
resonance Ω, and we can expand the polarizability

α(iξ) ≈ α(0)(1 − ξ2/Ω2). (25)

The following discussion applies to a free-electron metal
at high density where ε∞ = 1 and σ � Ω.

4.1 Good conductor

We then have the small parameter ωc/σ to simplify the re-
flection coefficients. It turns out that the impact of charge
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Fig. 2. (Color online) Atom-surface interaction at zero tem-
perature, from the van der Waals into the Casimir-Polder
range. We plot the c3 coefficient, i.e., the potential U(z)
multiplied with z3, in units of �Ωα(0). The distance z is
in units of the screening length a0. The arrow marks the
(reduced) transition wavelength λA. Solid blue line “local
conductor”: Drude metal with dielectric function (18); dashed:
surface covered with a diffusive charge layer (CL model);
dotted: continuous bulk charge with a hydrodynamic response
(CC model). Solid gray lines: short-distance asymptotes to the
CL and CC models, based on the approximate reflection coeffi-
cients (21, 23). Parameters: DC conductivity σ = 3.6×1017 s−1

(typical for Al), dielectric constant ε∞ = 1, electron scatter-
ing times τ = τs = 10−15 s, diffusion constants D = Ds =
5 × 103 cm2/s, atomic resonance wavelength 2πλA = 628 nm
(Ω/2π = 477 THz). For these parameters, the screening length
is a0 ≈ 0.3 nm. The van der Waals interaction c3/z3 with
a local Drude conductor gives a normalized value −0.118
from equation (20). The CC/CL models show, at short dis-
tances, a much weaker interaction potential O(1/z) given in
equation (22).

diffusion is very small in the Casimir-Polder regime: for
the CL model, we find by inspection that the relevant di-
mensionless ratio is Ds/(cz) � 1. We start with the zeroth
order with respect to this ratio and expand in powers of

δ =
√

ωc

2πσ
� 1. (26)

Performing the integrations, we get the familiar Casimir-
Polder potential and next-order corrections

U(z) ≈ −3�cα(0)
8πz4

[
1 − 20

3
ω2

c

Ω2
+

δ

6
√

2

∫ ∞

0

dx
√

1 + ωcτ x

×
(
x7/2Γ (0, x) − 3(1 + x)e−xx3/2

)
+ O(a2)

]
,

(27)

where the incomplete Gamma function is Γ (0, x) ≡∫ ∞
x t−1e−tdt. The limiting values of third term give a cor-

rection −(77/72)δ
√

π/2 ≈ −1.34 δ ∼ z−1/2 as ωcτ → 0
and −(8/5)δ

√
2ωcτ ≈ −2.26 δ

√
ωcτ ∼ z−1 as ωcτ → ∞.

Note that these approximations correspond to two in-
equivalent ways of implementing the perfect-conductor
limit. The first case could be called “overdamped”, with
a purely real conductivity. The penetration of transverse
fields into the bulk then occurs by means of diffusion. The

correction to the Casimir-Polder potential in equation (27)
scales like �c/z ∝ z−1/2 where �c =

√
c2/σωc is the mag-

netic diffusion length at the characteristic frequency ωc.
In the second case, the conductivity is purely imaginary
and, similar to a superconductor, the transverse field is
screened from the bulk. The correction to the Casimir-
Polder potential arises from the field penetrating a thin
layer of the order of the plasma wavelength (also called
London-Meissner penetration depth) λp = c

√
τ/(4πσ),

and scales like λp/z. The latter case has been studied, for
example, in reference [38], equation (37), and their result
is recovered by the two correction terms in equation (27):

U(z) − UCP(z)
UCP(z)

≈ −5
3

λ2
A

z2
− 8

5
λp

z
(λA � z � τc), (28)

where UCP(z) is the first term in equation (27). This range
of distances is quite narrow for the parameters of Figure 2,
where cτ ≈ 300 nm.

Let us now extract the contribution due to the diffusive
charge layer (CL model). To the first order in the surface
diffusion coefficient Ds, the correction to the local model
can be worked out to be:

U(z) − Uloc(z)
UCP(z)

≈ − Dsδ

6
√

2 cz

∫ ∞

0

dx

√
x (1 + ωcτ x)1/2

1 + ωcτs x

× [
e−x(12 + 12x + 3x2 − x3)

+x4Γ (0, x)
]
. (29)

In the limiting case ωcτ , ωcτs → 0, the integration gives
a relative correction −(285/88)

√
π/2 (Dsδ/cz) ∼ z−3/2;

in the opposite limit, −(12/5)
√

2τ/ωcτ2
s (Dsδ/cz) =

−(6
√

2/5)(cs/c)2(λp/z) where the speed of sound
cs =

√
Ds/τs characterizes the dispersion of longitudinal

modes in the charge layer. The latter estimate illustrates
that the correction brought about by the charge layer is
negligible in the Casimir-Polder regime. A similar con-
clusion is reached for the continuous charge (CC) model;
we omit the calculations for brevity. The numerical re-
sults from Figure 2 illustrate that both CL and CC mod-
els merge into the local description in the Casimir-Polder
range z >∼λA.

4.2 Semiconductor

Figure 3 shows numerical calculations of the interaction
potential for a material with a conductivity typical for
semiconductors. The characteristic length a0 for screening
is then much larger and falls into the Casimir-Polder range
of the atom-surface potential. The data show that the CC
and CL models interpolate between the limiting cases of
a local Drude conductor and a non-conducting dielectric
(where ε(ω) = ε∞ does not diverge at zero frequency). We
have taken the relatively low value ε∞ = 1.5 to amplify
the difference between the dielectric and the conductor in
the local limit: their difference scales with 2/(ε∞ + 1).
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Fig. 3. (Color online) Atom-surface potential through the
Casimir-Polder range up to the thermal wavelength. We plot
the c3 coefficient of the free energy, i.e. F(z)z3, but here in
units of α(0)kBT . The distance is normalized to the screen-
ing length a0 ≈ 73 nm. Solid thick curve: local dielectric func-
tion in Drude form; dashed curve: charge layer (CL) model;
dotted curve: hydrodynamic (continuous charge, CC) model;
solid thin curve: non-conducting local dielectric. Parameters:
background dielectric constant ε∞ = 1.5, DC conductivity
σ = 1010 s−1 (comparable to Ge), electron scattering time τ =
τs = 10−13 s, diffusion constants D = Ds = 4.5 cm2/s, atomic
resonance Ω/2π = 477 THz (wavelength 2πλA = 628 nm),
Temperature T = 300 K (thermal wavelength λT = 7.6 μm).

In Figure 3, we show the free energy of interaction F(z)
calculated from the Matsubara sum (9). At distances be-
yond the thermal wavelength λT , the free energy follows
a 1/z3 power law with a c3 coefficient proportional to T
that we discuss in the following section. The difference
between dielectric and Drude conductor arises, for these
parameters, from the zeroth term in the Matsubara sum.
This term is discussed in more detail in Section 5. In-
deed, in the other terms, the conductivity enters only
in the ratio 4πσ/ξl = 2�σ/(lkBT ). At room tempera-
ture, this ratio can be neglected compared to the back-
ground dielectric constant ε∞ provided the conductiv-
ity σ � 4× 1013 s−1. This regime applies to a wide range
of doped semi-conductors.

The van der Waals regime for this material is not
described by equation (20) due to the low conductiv-
ity. Ignoring conductivity completely, equation (19) for
a local dielectric gives a short-range coefficient c3 with a
value −1.91 α(0)kBT in the units of Figure 3: this corre-
sponds well to the full calculation. We have checked that
the small difference is actually due to relatively large devi-
ations from the non-retarded approximation that was ap-
plied to derive equation (19). A similar situation occurred
in reference [39] which discusses the Casimir force between
two plates separated by a dielectric liquid.

5 Lifshitz (thermal) regime

This section deals with the long distance regime λT � z
where the leading contribution to the atom-surface po-
tential is given by the l = 0 term in the Matsubara
sum (9). The other terms are proportional to the exponen-
tially small factor exp(−4πlz/λT ) and can be neglected if

the l = 0 term is nonzero. A glance at Figure 3 illus-
trates that the thermal regime is already well borne out
at z ∼ λT due to the factor 4π in the exponential.

The static term in the Matsubara sum has been the
subject of much discussion in the field of dispersion in-
teractions [40,41]. To illustrate this, we give the limiting
forms of the free energy in the thermal range for an ideal
dielectric material

λT � z : F(z) ≈ −α(0)kBT

4z3

ε∞ − 1
ε∞ + 1

, (30)

while for a conductor in the same limit

F(z) ≈ −α(0)kBT

4z3
. (31)

In fact, the latter result is obtained for any material with
a nonzero conductivity: as σ → 0, the former (dielec-
tric) result is not obtained in a continuous manner [4].
This is due to the static reflection coefficient rTM(0, k)
which is equal to 1 for any nonzero σ, while setting σ = 0
from the start for a pure dielectric, one gets rTM(0, k) =
(ε∞ − 1)/(ε∞ + 1). This difference between conductor
and dielectric is also visible in the Casimir-Polder range
shown in Figure 3. The discontinuity disappears only in
the limit T = 0 for the material parameters considered
here.

This effect is actually an artefact of the description in
terms of a local material response (conductivity, dielectric
function). Using a hydrodynamic model similar to our CC,
Pitaevskii has shown that the free energy shows a contin-
uous cross-over between the limiting cases equations (30)
and (31). We show now that the same is true for both CC
and CL models considered here.

For the CC model, the first line of equation (9) can be
written in terms of a dimensionless integral (t = 2kz)

λT � z :

F(z) ≈ −α(0)kBT

8z3

∞∫
0

dt t2e−t ε∞
√

t2 + (2z/a0)2 − t

ε∞
√

t2 + (2z/a0)2 + t
,

(32)

with the screening length a0 of equation (1). We recover
Pitaevskii’s result [5] by calculating a0 from the diffu-
sion coefficient D ≈ kBTτ/m∗ of a non-degenerate elec-
tron gas. This leads to a−2

0 = 4πn�B where n is the car-
rier density in the conductor and �B the Bjerrum length
(i.e., the distance where the Coulomb energy between
two electrons becomes comparable to the thermal en-
ergy: e2/(ε∞�B) = kBT ). A glance at equation (32) tells
that the dielectric and metallic values of the reflection
coefficient are smoothly interpolated as the ratio (z/a0)2
changes from zero to infinity. This is illustrated in Figure 4
(dotted line) where the coefficient of the 1/z3 power law
is plotted vs z/a0.
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Fig. 4. (Color online) Interaction potential in the thermal
range: c3 coefficient of the free energy, i.e., F(z)z3, in units of
α(0)kBT . The distance is normalized to the screening length
a0 ≈ 33 μm. Solid thick blue curve: local conductor (σ = 5 ×
104 s−1, typical for highly purified water); dashed curve: charge
layer (CL) model with diffusion coefficient Ds = 4.5 cm2/s,
τs = 10−13 s; dotted curve: continuous bulk charge (CC) model
(D = Ds, τ = τs); solid thin green curve: ideal dielectric model
(ε∞ = 1.5). The other parameters are as in Figure 2.

The same qualitative behaviour is found in the CL
model where the free energy takes the form

F(z) ≈ −α(0)kBT

8z3

∞∫
0

dt t2e−t (ε∞ − 1)t2 + ε∞(2z/a0)2

(ε∞ + 1)t2 + ε∞(2z/a0)2
.

(33)
This is shown in dashed in Figure 4. The parameters cho-
sen here are for a very poor conductivity (low carrier den-
sity) where the screening length a0 is large enough to fall
into the thermal range. This applies to dilutely doped
semiconductors, or to the thermally excited conduction
band of an intrinsic semiconductor.

In Figure 5, we explore under which conditions the
atom-surface interaction energy is most sensitive to the
details of the surface charge response. This contour
plot shows the ratio between the CL and CC results
for the interaction energy in the thermal range, vary-
ing the distance z and the background dielectric con-
stant ε∞. The two models differ maximally in the cross
over range z ≈ a0, and for ε∞ ∼ 1. This could have been
expected from equations (30) and (31) because the dielec-
tric and metallic limits (the two horizontal asymptotes in
Fig. 4) are then most separated.

6 Discussion and conclusion

Any material with mobile charges is characterized by
a screening length a0, and a local current-field relation
(Ohm’s law) is necessarily limited to scales larger than a0.
We have explored in this paper how screening at and be-
low the surface influences the long-range van der Waals-
Casimir-Polder (vdW-CP) interaction between an atom
and the body. Our description may be termed “meso-
scopic” in the sense that the electronic response is col-
lective in nature, but retains traces of ballistic carriers via
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Fig. 5. (Color online) Contour plot of the ratio between the
interaction potentials in the CL and CC models. We consider
only the thermal range equations (32) and (33). The x-axis
gives the ratio (z/a0)

2, the y-axis the background dielectric
constant ε∞. The parameters for surface and bulk diffusion
are the same (D = Ds, τ = τs).

the diffusion coefficient D ∼ v� (v is a typical carrier veloc-
ity and � = vτ the scattering mean free path). Two models
for the electromagnetic response of the surface were stud-
ied in detail: a continuous charge distribution below the
surface (CC) within a hydrodynamic approximation, and
a thin charge layer (CL) with a diffusive response typi-
cal for, e.g., localized surface states. Both models provide
a continuous crossover of the vdW-CP potential between
two local limiting cases: a pure dielectric and a conduct-
ing medium, as the atom-surface distance goes through
the range z ∼ a0. The two limits can be distinguished
from the zero-frequency limit of their dielectric functions
and give different coefficients c3 for the 1/z3 power laws
that prevail at very short (van der Waals) and very large
(thermal or Lifshitz) distances. Our calculations extend
the picture proposed in references [5,9] to any distances,
namely that the nonzero DC conductivity σ can be ne-
glected if the atom-surface distance z is shorter than the
screening length a0 (Eq. (1)).

The differences in the vdW-CP interaction may be
used as a probe that can identify the type of charge trans-
port in the (sub)surface region. The sensitivity of this
probe is maximal when the screening length a0 matches
the atom-surface distance z, particularly in the retarded
range z > λA. The CC/CL difference is particularly
large when the dielectric constant ε∞ of bound carriers
and background ions is close to 1. The reason is that
the jump ε∞ − 1 leads to a surface polarization charge
that responds locally (not by diffusion) and is there-
fore masking the effect of either the CC or the CL. For
transitions in the optical visible range, these favorable
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conditions correspond to z > 1 μm which is indeed
the achievable range of present experiments. A screening
length a0 ≈ 1 μm occurs in a dilute semiconductor,
which at room temperature is a non-degenerate elec-
tron system with a0 =

√
ε∞kBT/(4πne2). Hence we

require a carrier density n ≈ 1012 cm−3 × ε∞. This
density can be achieved by dilute doping, as for fused sil-
ica [5]. One may also work with intrinsic semiconductors
where the carriers are thermally excited with a den-
sity n ≈ 1019 cm−3 exp (−Eg/2kBT ) [9,42] where Eg is the
gap. Hence, with Eg ≈ 1 eV and by varying the tempera-
ture, one can span a range around 1012 cm−3.

In conclusion, our two charge type models are represen-
tatives of a composite surface of a metal, with a nonlocal
electromagnetic response due to charge transport in the
bulk and at the surface. Such composite surfaces are fairly
common corresponding to either surfaces covered with ad-
sorbates or nanostructures, or to disordered surfaces with
quantum well states. We have studied the Casimir-Polder
interaction with such surfaces and have shown where this
effect can be used as a sensitive probe of the surface type
and its diffusive properties.

This research was supported by a grant from the German-
Israeli Foundation for Scientific Research and Development
(GIF). We thank H. Haakh for useful discussions and G.L.
Klimchitskaya and V.M. Mostepanenko for comment.

Appendix: Surface response

A.1 Surface impedances

The calculation of the electromagnetic Green function pro-
ceeds by expanding the field created by a point source
into Fourier components and finding reflection and trans-
mission coefficients for each wave vector ki incident on
the surface. With the wave vector in the xz-plane and
the macroscopic body in the half-space z < 0, we have
ki = kex − kzez with kz =

√
ω2/c2 − k2 = iv0. We con-

sider separately two principal polarizations. In the TE-
polarization, the electric field outside the surface is writ-
ten in the form

z > 0: E(r) = ETE(k) eikxey

(
ev0z + rTEe−v0z

)
,

(A.1)
where ey is the unit vector transverse to the plane of in-
cidence. One gets the magnetic field from the Faraday
equation: Bx(r) = i(c/ω)∂zEy(r). The ratio between these
two tangential fields, evaluated at z = 0+, is the surface
impedance ZTE and determines the reflection coefficient

ZTE =
Ey(0+)
Bx(0+)

, rTE =
i(cv0/ω)ZTE − 1
i(cv0/ω)ZTE + 1

. (A.2)

In a local model for the body response, one has
ZTE = −iω/(cv) where the transmitted wave vector is
kt = kex − ivez, and the Fresnel formula is recovered.

In the TM-polarization the electric field vector is in
the xz-plane, and equation (A.1) becomes

E(r) = ATM(k) eikx
[
(ikez − v0ex)ev0z

+ rTM(ikez + v0ex)e−v0z
]
. (A.3)

This gives By = −i(c/ω)(∂zEx − ikEz) just above the
surface. One defines impedance and reflection coefficient
from the tangential (x-) component of the electric field

ZTM =
Ex(0+)
By(0+)

, rTM =
v0 − i(ω/c)ZTM

v0 + i(ω/c)ZTM
. (A.4)

Its local approximation is ZTM =−icv/[ωε(ω)] where ε(ω)
is the bulk dielectric function.

A.2 Solving the reflection problem

A.2.1 Charge layer model (CL)

We start to work out the electromagnetic response func-
tion in the TE-polarization. Within a local description of
the bulk medium below the layer, one can work with a
medium wave vector kt in the xz-plane, as defined after
equation (A.2), with

iv =
√

(ω/c)2ε(ω) − k2. (A.5)

An ansatz similar to equation (A.1) can be written down
and augmented by a longitudinal part

z < 0: E(r) = ETE(k) eikx
[
eytTEevz

+ tL(ikex + v1ez)ev1z
]
, (A.6)

where the component v1 of the longitudinal wave vector
is as yet undetermined. From the Maxwell equations, the
tangential component Ex is continuous, and since it is
zero above the layer (Eq. (A.1)), we find tL = 0 for the
longitudinal amplitude. The field Ez perpendicular to the
surface is zero above and below the layer, hence the sur-
face charge γ and the current density J are zero from
equations (10) and (11). The magnetic field Bx is then
continuous as well, and we get the local value for the sur-
face impedance from

ZTE =
Ey(0−)
Bx(0−)

=
tTE

i(c/ω)v tTE
. (A.7)

The reflection coefficient (A.2) takes the familiar form

rTE =
v0 − v

v0 + v
. (A.8)

In the TM-polarization, both transverse and longitudinal
fields in the medium are relevant, as is well known [43].
The expansion (A.6) becomes

z < 0: E(r) = ATM(k) eikx
[
(ikez − vex)tTM evz

+ (ikex + v1ez)tL ev1z
]
. (A.9)
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The tangential field Ex is continuous and becomes outside
the layer

Ex(0+) = ATM(k) eikx(−vtTM + iktL). (A.10)

Due to the surface current density Jx, the field By has a
jump, and one gets above the layer:

By(0+) = By(0−) − 4π

c
Jx

= −i
ωε(ω)

c
ATMtTM +

4π

c
ikDs(ω)γ. (A.11)

We need to express γ and tL in terms of the transmitted
amplitude tTM: use charge conservation (11) and the conti-
nuity of the z-component of the Ampère-Maxwell equation
which links the jumps in By (surface current) and in εEz

(surface charge). A straightforward calculation yields

γ = −σ(ω)kATMtTM

ω + iDs(ω)k2
, (A.12)

and tL = 0. Putting equations (A.10)–(A.12) into equa-
tion (A.4), we thus find the impedance

ZTM =
−i(c/ω)v(1 + iDs(ω)k2/ω)

ε(ω) + iε∞Ds(ω)k2/ω
, (A.13)

where ε∞ is the background dielectric function (excluding
the conduction current).

A.2.2 Continuous bulk charge model (CC)

The surface impedance in this case is a well-known prob-
lem, reviewed in reference [43]. We give some details here
for the ease of the reader. An alternative derivation that
parallels the argument of the previous paragraph can be
found in reference [26].

The CC model is equivalent to the following transverse
and longitudinal bulk dielectric functions (relative to the
medium wave vector q)

ε⊥(ω,q) = ε(ω) (A.14)

ε‖(ω,q) = ε∞ +
4πiσ(ω)

ω + iq2D(ω)
. (A.15)

This follows from equation (13) written in Fourier space
and using charge conservation in the bulk.

The surface impedances can be found, for example, in
the review paper [43], equation (2.26). We assume that
the conduction current is tangential to the surface (specu-
lar scattering). The impedance in TE-polarization involves
only the transverse dielectric function ε⊥, and the reflec-
tion coefficient rTE is therefore the same as for a local
medium (first row in Tab. 1). With our convention for the
reflection coefficients, the TM-impedance is given by

ZTM = −2iω
πc

∫ ∞

0

dqz

q2

(
q2
z

(ω/c)2ε⊥(ω,q) − q2

+
k2

(ω/c)2ε‖(ω,q)

)
, (A.16)

where the dielectric functions are evaluated at the wave
vector q = kex − qzez. Two poles contribute to the in-
tegral: a transverse mode at q2 = (ω/c)2ε⊥ or qz = iv
(Eq. (A.5)), and a longitudinal mode at ε‖(ω,q) = 0
or qz = iv1 (Tab. 1). The pole at q2 = 0 does not con-
tribute because its residue vanishes. A straightforward
contour integration of equation (A.16) then yields

ZTM = − ic
ωε(ω)

(
v + k2 ε(ω) − ε∞

ε∞v1

)
. (A.17)

Inserted into equation (A.4), we get the reflection coeffi-
cient rTM given in Table 1.

A.3 Surface conductivity

If we model the charge layer as a film of thickness a and
conductivity σs(ω), its integrated current density (parallel
to the layer) has the form:

J(r, ω) = −Ds(ω)∇||γ(x, y) + σs(ω)aE||, (A.18)

where the last term is the conduction current. Including
this term in the surface response calculations we get re-
flection coefficients

rTM =
ε′sv0 − v

ε′sv0 + v
(A.19)

rTE =
v0 − v + 4πiaσs(ω)ω/c2

v0 + v − 4πiaσs(ω)ω/c2
, (A.20)

with the surface dielectric function ε′s being (cf. Eq. (17))

ε′s = ε∞ + 4πi
σ(ω) + vaσs(ω)
ω + iDs(ω)k2

. (A.21)

We now identify under which conditions the terms propor-
tional to σs(ω) are negligible in these expressions. For an
order of magnitude estimate, we take σs(ω) ≈ σ(ω) and
a layer thickness a at the atomic scale. Therefore we get
from equation (A.21) the condition

va = a

√
k2 − ω2

c2
ε(ω) � 1. (A.22)

An upper limit can be found easily at imaginary fre-
quencies ω = iξ where ε(iξ) = ε∞ + 4πσ/[ξ(1 + ξτ)] <

ε∞ + ω2
p/ξ2, with ωp =

√
4πσ/τ the plasma frequency.

Using the characteristic scales k ∼ 1/z and ξ ∼ Ω in
the integrals for the Casimir-Polder potential, the esti-
mate (A.22) becomes

a

√
1
z2

+
ε∞
λ2

A

+
1
λ2

p

� 1. (A.23)

Hence we require the layer thickness a to be much smaller
than the smallest of the length scales distance z, atomic
transition wavelength λA = c/Ω

√
ε∞ and plasma wave-

length λp = c/ωp. All these are conditions are well
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satisfied for a ≤ 1 nm. Then the surface dielectric func-
tions ε′s and εs (Eqs. (A.21), (17)) and the rTM reflection
coefficients equation (A.19), Table 1 are equivalent.

As for the rTE amplitude (A.20), we can neglect the
surface conductivity term provided

4πaσs(iξ)ξ
c2

�
√

4πσ(iξ)ξ
c2

≤ v. (A.24)

As an estimate, this is equivalent to

4πσa2ξ

c2(1 + τξ)
� 1. (A.25)

The maximal value on the left hand side is (a/λp)2,
hence a must be smaller than the plasma wavelength, as
we found before in equation (A.23). In the limit of large k,
the difference v0−v in equation (A.20) becomes small, and
the condition (A.24) must be replaced by

4πaσs(iξ)ξ
c2

� 2πσ(iξ)ξ
kc2

. (A.26)

Estimating k ∼ 1/z, we get a � z which we also found in
equation (A.23) above. For a ≤ 1 nm, also the rTE ampli-
tude is therefore not affected by the layer conductivity.
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