2017 Impact factor 2.240

EPJ Plus Focus Point - Interdisciplinary Science with Cosmic Rays

Interdisciplinary Science with Cosmic Rays Guest Editors: Antonio Bueno and Lawrence Wiencke

The Pierre Auger Observatory, located near the base of the Argentinean Andes, is the largest cosmic ray facility in the world. Spanning 3,000 km2, its complementary detector systems use the troposphere as a giant calorimeter to measure the highest-energy subatomic particles known to mankind. Because this instrument observes both the earth and the cosmos in unique ways, its interdisciplinary significance extends to the atmospheric and earth sciences. The articles comprising this EPJ Plus Focus Point highlight examples of observations in these fields and discuss several beginning projects. As shown in the introductory remarks (A. Watson), these articles are intended to reach a broad audience, both in order to stimulate discussion and to encourage new collaborative efforts of an interdisciplinary nature.

The observatory is introduced by Wiencke et al. with examples such as a major earthquake that was observed by the observatory’s surface detector. A proposed seismic sensor array to be located at the observatory is also described by Ruigrok et al. The observatory’s ground-based atmospheric monitoring program is arguably the most extensive in the southern hemisphere. Aerosols and clouds play a complicated role in the earth’s climate and there are fewer detailed measurementsavailable from the southern hemisphere. The measurements of the atmospheric molecular component are described by Keilhauer et al., including a comparison between local radiosonde measurements and extrapolations from the Global Data Assimilation System. The subsequent article by Louedec et al. reviews methods used at the observatory to characterizeaerosols and atmospheric clarity, and outlines a proposed project to study the origin and transport of iron-rich aerosols that play a role in biological processes in the southern ocean. The article by Tonachini et al. discusses the lidar systems at the observatory. The demonstration how measurements of clouds are used to ground truth comparisons with GOES satellite datais the subject of the article by Chirinos et al. Next, Mussa et al. describe the serendipitous observation of transient luminescent events (ELVES) created above some thunderstorms. This article also demonstrates a detailed measurement of anELVE’s time evolution using the observatory’s air fluorescence detector. Finally, cosmic ray air showers have been proposed as a possible trigger mechanism for lightning. A closing article (Brown et al.) discusses a lightning detection system planned to test this hypothesis.

To view this focus point and others already published, please click here.

Paolo Biscari
The authors wish to thank the anonymous reviewers for their helpful comments and suggestions. They are also grateful to EPJP for their corrections pertaining to the English language.

E. Tala-Tebue, University of Dschang, Bandjoun, Cameroon

ISSN: 2190-5444 (Electronic Edition)

© Società Italiana di Fisica and